IDA MUSDAFIA IBRAHIM.,SE.,M.M
Manajemen Keuangan II (3 SKS)

Combined by $\mathbf{P}_{2} \mathrm{D}_{5} \mathrm{~F}_{0}$ Combine (Unregistered Version)													$\begin{aligned} & 13 \\ & \begin{array}{l} 2020.07- \\ 02 \end{array} \end{aligned}$	
Mahasiswa If you	want				e t	he	S					${ }_{25}^{2 s p e q}$		
2018031009 CLIVF JONATHAN		$\left.{ }^{(}\right)$	$\left.{ }^{(}\right)$	${ }^{(}$	${ }^{(}$	Hadir	Hadir	Hadir	Hadir	$\stackrel{(}{*}$)	Hadir	Hadir	Hadir
2018031019 CHARISSA HELSJE SWEETLYALA		${ }^{-}$	$\left.{ }^{(}\right)$	${ }^{(}$	$\stackrel{(}{*}$	Hadir	Hadir	Hadir	Hadir	${ }^{*}$)	Hadir	Hadir	Hadir
2018031023 GREGORIUS BIMA	Q_{θ}	$\left.{ }^{(}\right)$	${ }^{*}$	${ }^{(}$	Hadr	Hadir	Hadir	Hadir	Hadir	$\stackrel{(}{+}$	-	Hadir	Hadir	Hadir
2018031031 BAGUS ARYO MUWAFFAQ	(${ }^{\text {a }}$	($)$	(\rightarrow	(${ }^{\text {a }}$	(-)	Hadir	Hadir	Hadir	Hadir	${ }^{-}$		Hadir	Hadir	Hadir

DZULFIQAR
 Combined by PDF Combine (Unregistered Version)

2018031040

MUHAMMAD RIZKI FARIDIANSYAH AZIZ

2018031041

VERA YUNIAR

$\begin{array}{llllll}(-) & (-) & (-) & (-) & (-)\end{array}$
Hadir

$\begin{array}{llllll}(-) & (-) & (-) & (-) & (-)\end{array}$
Hadir
Hadir
Hadir
Hadir
$(-)$
Hadir
Hadi
Hadir

2018031052
WORONURUL HALIZA

$(-)$	$(-)$	$(-)$	$(-)$	$(-)$

Hadir
Hadir (-)
Hadir
$(-) \quad(-)$ Hadir
Hadir
Hadir

2018031055
YASMIN BINTI BADAR MAHRI

$(-) \quad(-) \quad(-) \quad(-) \quad(-)$
Hadir
Hadir
Hadir
Hadir
$(-) \quad(-)$
Hadir
Hadir
Hadir

2018031056

ANTONIUS KURNIAWAN ANDIKA
JINGI

$(-)$	$(-)$	$(-)$	$(-)$	$(-)$

Hadir
Hadir
Hadir
Hadir
$(-) \quad(-) \quad$ Hadir
Hadir
Hadir

2018031067

Hadir
Hadir

$\underset{\substack{2 \\ \text { ERREF ADTIA PERMANA }}}{2018031071}$ If you ソot to remove the watermark, please register

Hadir
Hadir

```
2018031072
MARVIANA ROSA SATE UJAN
```


$(-) \quad(-) \quad(-) \quad(-) \quad(-)$
Hadir
Hadir
Hadir
Hadir
$(-) \quad(-$
Hadir
Hadir
Hadir

$(-)$	$(-)$	$(-)$	$(-)$	$(-)$

Hadir
Hadir

Hadir
Hadir
$(-)$
-) (-)
Hadir
Hadir

$(-)$	$(-)$	$(-)$	$(-)$	$(-)$

Hadir
Hadir

Hadir
Hadir
$(-) \quad(-)$
Hadir
Hadir
Hadir

7/2020 Dosen																
			01	02	03	04	05	06	07	08	09	10	11	12	13	14
No	Mahasiswa	Foto						$\begin{aligned} & 2020-04- \\ & 16 \end{aligned}$	$\begin{aligned} & 2020-04- \\ & 23 \end{aligned}$	$\begin{aligned} & 2020-05- \\ & 14 \end{aligned}$	$\begin{aligned} & \text { 2020-06- } \\ & 04 \end{aligned}$			$\begin{aligned} & 2020-06- \\ & 25 \end{aligned}$	$\begin{aligned} & \text { 2020-07- } \\ & 02 \end{aligned}$	$\begin{aligned} & 2020-07- \\ & 09 \end{aligned}$
17	2018031098 Combing by PDF Combine (Unregistered Version) DENTA WULANDARI GONSIERAD $(-) \quad(-) \quad(-) \quad(-) \quad(-)$ Hadir Hadir Hadir Hadir $(-) \quad(-)$ Hadir Hadir Hadir If you want to remove the watermark, please register															
18	2019131014 DIMAS LUTHFIANTO			$(-)$			$(-)$	Hadir	Hadir	Hadir	Hadir	$(-)$	$(-)$	Hadir	Hadir	Hadir

Combined by PDF Combine (Unregistered Version)
If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)
If you want to remove the watermark, please register

Dosen : IDA MUSDAFIA IBRAHIM.,SE.,M.M

Manajemen KeuanganII.(3 SKS) COMbined PDF Combine (Unregistered Version)

KAMIS 07:50-10:20 you want to remove the watermark, please register

No.	NIM	NAMA FOTO	NILAI UAS	NILAI UTS	NILAI TUGAS	TOTAL
1	2018031009	CLIVF Jonathan	$\begin{gathered} 88 \\ (40 \%) \end{gathered}$	$\begin{gathered} 80 \\ (30 \%) \end{gathered}$	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	81.7
2	2018031019	CHARISSA HeLSJE SWEETLYALA	$\begin{gathered} 88 \\ (40 \%) \end{gathered}$	$\begin{gathered} 80 \\ (30 \%) \end{gathered}$	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	81.7
3	2018031023	GREGORIUS BIMA	$\begin{gathered} 100 \\ (40 \%) \end{gathered}$	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	85
4	2018031031	sacumbined byy PRE Combine	regisiste		$\begin{gathered} 80 \\ (30 \%) \end{gathered}$	88
5	2018031040	If you want to remove the wat MUHAMMAD RIZKI FARIDIANSYAH AZIZ	$\underset{\substack{98 \\(40 \%)}}{1 \text { ark, ple }}$	se regis	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	85.7
6	2018031041	VERA YUNIAR	$\begin{gathered} 98 \\ (40 \%) \end{gathered}$	$\begin{gathered} 95 \\ (30 \%) \end{gathered}$	$\begin{gathered} 95 \\ (30 \%) \end{gathered}$	96.2
7	2018031042	MEGA YANA	$\begin{gathered} 98 \\ (40 \%) \end{gathered}$	$\begin{gathered} 85 \\ (30 \%) \end{gathered}$	$\begin{gathered} 90 \\ (30 \%) \end{gathered}$	91.7
8	2018031052	WORONURUL HALIZA	$\begin{gathered} 94 \\ (40 \%) \end{gathered}$	$\begin{gathered} 80 \\ (30 \%) \end{gathered}$	$\begin{gathered} 85 \\ (30 \%) \end{gathered}$	87.1
9	2018031055	YASMIN BINTI BADAR MAHRI	$\begin{gathered} 90 \\ (40 \%) \end{gathered}$	$\begin{gathered} 80 \\ (30 \%) \end{gathered}$	$\begin{gathered} 85 \\ (30 \%) \end{gathered}$	85.5
10	2018031056	Combined by PDF Combine (90 regis	${ }^{80} \mathrm{~d}^{80} \mathrm{Ve}$	$\left.10 n^{75}\right)^{\left(9^{0 \%)}\right)}$	82.5
11	2018031067		natk, (40\%)		ter ${ }^{80}$ (30\%)	85.7
12	2018031071	ERIEF ADITIA PERMANA	$\begin{gathered} 98 \\ (40 \%) \end{gathered}$	$\begin{gathered} 70 \\ (30 \%) \end{gathered}$	$\begin{gathered} 80 \\ (30 \%) \end{gathered}$	84.2
13	2018031072	MARVIANA ROSA SATE UJAN	$\begin{gathered} 100 \\ (40 \%) \end{gathered}$	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	$\begin{gathered} 90 \\ (30 \%) \end{gathered}$	89.5
14	2018031073	FADILAH AKBAR	$\begin{gathered} 100 \\ (40 \%) \end{gathered}$	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	$\begin{gathered} 75 \\ (30 \%) \end{gathered}$	85

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)
If you want to remove the watermark, please register

$\begin{array}{ll}\text { E8-1. } & \text { Total annual return } \\ \text { Answer: } & (\$ 0+\$ 12,000-\$ 10,000) \div \$ 0,000=\$ 2,000 \div \$ 10,000=20 \%\end{array}$
Logistics, Inc. doubled the annual rate of return predicted by the analyst. The negative net income is irrelevant to the problem.

E8-2. Expected return
Answer:

Analyst	Probability	Return	Weighted Value
1	0.35	5\%	1.75\%
2	0.05	-5\%	-0.25\%
3	0.20	10\%	2.0\%
4	0.40	3\%	1.2\%
TotaCombined. doy PDExpeathaitite (Unregistered Version)			

E8-3. Complifingothewisknff teriomestmenthe watermark, please register
Answer: $C V_{1}=0.10 \div 0.15=0.6667 \quad C V_{2}=0.05 \div 0.12=0.4167$
Based solely on standard deviations, Investment 2 has lower risk than Investment 1. Based on coefficients of variation, Investment 2 is still less risky than Investment 1. Since the two investments have different expected returns, using the coefficient of variation to assess risk is better than simply comparing standard deviations because the coefficient of variation considers the relative size of the expected returns of each investment.

E8-4. Computing the expected return of a portfolio
Answer: $\quad r_{p}=(0.45 \times 0.038)+(0.4 \times 0.123)+(0.15 \times 0.174)$

$$
=(0.0171)+(0.0492)+(0.0261=0.0924=9.24 \%
$$

The portfolio is expected to have a return of approximately 9.2%.
E8-5. Calculating a portfolio beta
Answer:

$$
\text { Beta }=(0.20 \times 1.15)+(0.10 \times 0.85)+(0.15 \times 1.60)+(0.20 \times 1.35)+(0.35 \times 1.85)
$$

E8-6. Calculating the required rate of return
Answer: If you want to remove the watermark, please register
a. Required return $=0.05+1.8(0.10-0.05)=0.05+0.09=0.14$
b. Required return $=0.05+1.8(0.13-0.05)=0.05+0.144=0.194$
c. Although the risk-free rate does not change, as the market return increases, the required return on the asset rises by 180% of the change in the market's return.

- SolutionsitaReroblqups Combine (Unregistered Version)

LG 1; Basic
a. Investment X: Return $=\frac{(\$ 21,000-\$ 20,000+\$ 1,500)}{\$ 20,000}=12.50 \%$

Investment Y: Return $=\frac{(\$ 55,000-\$ 55,000+\$ 6,800)}{\$ 55,000}=12.36 \%$
b. Investment X should be selected because it has a higher rate of return for the same level of risk.

P8-2. Return calculations: $r_{t}=\frac{\left(P_{t}-P_{t-1}+C_{t}\right)}{P}$

Combined by PDF Combine (Unregistered Version)

LG 1; Basic

If yout want to remove the watermark, Calculation	please register $\boldsymbol{r}_{\boldsymbol{t}}(\%)$	
A	$(\$ 1,100-\$ 800-\$ 100) \div \$ 800$	25.00
B	$(\$ 118,000-\$ 120,000+\$ 15,000) \div \$ 120,000$	10.83
C	$(\$ 48,000-\$ 45,000+\$ 7,000) \div \$ 45,000$	22.22
D	$(\$ 500-\$ 600+\$ 80) \div \$ 600$	-3.33
E	$(\$ 12,400-\$ 12,500+\$ 1,500) \div \$ 12,500$	11.20

P8-3. Risk preferences

LG 1; Intermediate

a. The risk-neutral manager would accept Investments X and Y because these have higher returns than the 12% required return and the risk doesn't matter.
b. The risk-averse manager would accept Investment X because it provides the highest return and has the lowest amount of risk. Investment X offers an increase in return for taking on more risk than what the firm currently earns.
c. The risk-seeking manager would accept Investments Y and Z because he or she is willing to CaRe grant
d. Traditionally, financial managers are risk averse and would choose Investment X , since it

P8-4. Riscanalysis ned by PDF Combine (Unregistered Version)

 LG 2; Intermediatea. If you want to remove the watermark, please register

Expansion	Range
A	$24 \%-16 \%=8 \%$
B	$30 \%-10 \%=20 \%$

b. Project A is less risky, since the range of outcomes for A is smaller than the range for Project B.
c. Since the most likely return for both projects is 20% and the initial investments are equal, the answer depends on your risk preference.
d. The answer is no longer clear, since it now involves a risk-return tradeoff. Project B has a slightly higher return but more risk, while A has both lower return and lower risk.

P8-5. Risk and probability
LG 2; Ittermedined by PDF Combine (Unregistered Version)
a.

Camera	Range
R	$30 \%-20 \%=10 \%$
S	$35 \%-15 \%=20 \%$

b.

	Possible Outcomes	Probability $\boldsymbol{P}_{\boldsymbol{r}}$	Expected Return $\boldsymbol{r}_{\boldsymbol{i}}$	Weighted Value $(\%)\left(\boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{P}_{\boldsymbol{r}}\right)$
Camera R	Pessimistic	0.25	20	5.00%
	Most likely	0.50	25	12.50%
	Optimistic	$\underline{0.25}$	30	$\underline{7.50 \%}$
		1.00	Expected return	$\underline{\underline{25.00 \%}}$

Camera S	Pessimistic	0.20	15	3.00%
	Most likely	0.55	25	13.75%

 outcomes. The risk-return tradeoff is present because Camera S is more risky and also provides a higher return than Camera R.

P8-6. Barchants Bydrisk by PDF Combine (Unregistered Version) LG 2; Intermediate

a. If you want to remove the watermark, please register Bar Chart-Line J

Combined baycharderombine (Unregistered Version)

b.

	Market Acceptance	$\begin{gathered} \text { Probability } \\ \boldsymbol{P}_{r i} \end{gathered}$	Expected Return r_{i}	Weighted Value $\left(\boldsymbol{r}_{i} \times \boldsymbol{P}_{r i}\right)$
Line J	Very Poor	0.05	0.0075	0.000375
	Poor	0.15	0.0125	0.001875
	Average	0.60	0.0850	0.051000
	Poor	0.15	0.025	0.003750
	Average	0.60	0.080	0.048000
	Good	0.15	0.135	0.020250
	Excellent	$\underline{0.05}$	0.150	$\underline{0.007500}$
		1.00	Expected return	$\underline{\underline{0.080000}}$

c. Line K appears less risky due to a slightly tighter distribution than line J , indicating a lower range of outcomes.

LG if Basict want to remove the watermark, please register
a. A $C V_{A}=\frac{7 \%}{20 \%}=0.3500$

B $C V_{B}=\frac{9.5 \%}{22 \%}=0.4318$
C $\quad C V_{C}=\frac{6 \%}{19 \%}=0.3158$
D $C V_{D}=\frac{5.5 \%}{16 \%}=0.3438$
b. Asset C has the lowest coefficient of variation and is the least risky relative to the other choices.

LG 2; Basic

b. The standard deviation measure fails to take into account both the volatility and the return of the investment. Investors would prefer higher return but less volatility, and the coefficient of variation provices a measure that takes into account both aspects of investors' preferences. Project D has the lowest CV , so it is the least risky investment relative to the return provided.
c. A $C V_{A}=\frac{0.029}{0.12}=0.2417$

B $\quad C V_{B}=\frac{0.032}{0.125}=0.2560$
C $\quad C V_{C}=\frac{0.035}{0.13}=0.2692$
D $\quad C V_{D}=\frac{0.030}{0.128}=0.2344$
In this case Project D is the best alternative since it provides the least amount of risk for each percent of return earned. Coefficient of variation is probably the best measure in this instance since it provides a standardized method of measuring the risk-return tradeoff for investments GeimplofieriegrddaynPDF Combine (Unregistered Version)

 LG 2; Challenge

a. If you wastockdricemove the watermaykriaplease register Year Beginning End Returns (Return-Average Return) ${ }^{2}$
$2009 \quad 14.36 \quad 21.55 \quad 50.07 \% \quad 0.0495$
$2010 \quad 21.55 \quad 64.78 \quad 200.60 \% \quad 1.6459$

2011	64.78	72.38	11.73%	0.3670

$2012 \quad 72.38 \quad 91.80 \quad \underline{26.83 \%} \quad \underline{0.2068}$
b.

Average return 72.31%
c.

Sum of variances

2.2692

3	Sample divisor $(n-1)$
0.7564	Variance
86.97%	Standard deviation

d. Combined by PDF Combine (Unregistefed VEpefficient of variation
e. The stock price of Hi-Tech, Inc. has definitely gone through some major price changes
 upward price trend over the past 4 years. Note how comparing securities on a $C V$ basis allows the investor to put the stock in proper perspective. The stock is riskier than what Mike normally buys but if he believes that Hi-Tech, Inc. will continue to rise then he should include it. The coefficient of variation, however, is greater than the 0.90 target.

P8-10. Assessing return and risk

LG 2; Challenge

a. Project 257
(1) Range: $1.00-(-0.10)=1.10$
(2) Expected return: $\bar{r}=\sum_{i=1}^{n} r_{i} \times P_{r i}$

			Expected Return
Rate of Return	Probability	Weighted Value	$\overline{\boldsymbol{r}}=\sum_{i=1}^{n} \boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{P}_{\boldsymbol{r}}$
$\boldsymbol{r}_{\boldsymbol{i}}$	$\boldsymbol{P}_{\boldsymbol{r} \boldsymbol{i}}$	$\boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{P}_{\boldsymbol{r} \boldsymbol{i}}$	
-0.10	0.01	-0.001	

Combined by PDF Conobine (Unregistrened Version)
$0.20 \quad 0.05 \quad 0.010$

If yoblowant to remove the watermark, plosase register

0.40	0.15	0.060
0.45	0.30	0.135
0.50	0.15	0.075
0.60	0.10	0.060
0.70	0.05	0.035
0.80	0.04	0.032
1.00	$\underline{0.01}$	0.010

$$
\sigma_{\text {Project } 257}=\sqrt{0.027350}=0.165378
$$

(4) $C V=\frac{0.165378}{0.450}=0.3675$

Project 432
(1) Range: $0.50-0.10=0.40$
(2) Expected return: $\bar{r}=\sum_{i=1}^{n} r_{i} \times P_{r i}$

Expected Return

| Rate of Return |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{r}_{\boldsymbol{i}}$ |\quad| Probability |
| :---: |
| $\boldsymbol{P}_{\boldsymbol{r} \boldsymbol{i}}$ | | Weighted Value |
| :---: |
| $\boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{P}_{\boldsymbol{r} \boldsymbol{i}}$ |$\quad \overline{\boldsymbol{r}}=\sum_{\boldsymbol{i}=1}^{\boldsymbol{n}} \boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{P}_{\boldsymbol{r} \boldsymbol{i}}$

Combineqs by PDF 0 Combine (dybloegistered Version)

0.30	0.20	0.0600	
0.35	0.15	0.0525	
0.40	0.10	0.0400	
0.45	0.10	0.0450	
0.50	$\underline{0.05}$	0.0250	$\overline{0.300}$

 If you want to remove the watermark, please register| $\boldsymbol{r}_{\boldsymbol{i}}$ | $\overline{\boldsymbol{r}}$ | $\boldsymbol{r}_{\boldsymbol{i}}-\overline{\boldsymbol{r}}$ | $\left(\boldsymbol{r}_{\boldsymbol{i}}-\overline{\boldsymbol{r}}\right)^{\mathbf{2}}$ | $\boldsymbol{P}_{\boldsymbol{r} \boldsymbol{i}}$ | $\left(\boldsymbol{r}_{\boldsymbol{i}}-\overline{\boldsymbol{r}}\right)^{2} \times P_{\boldsymbol{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.10 | 0.300 | -0.20 | 0.0400 | 0.05 | 0.002000 |
| 0.15 | 0.300 | -0.15 | 0.0225 | 0.10 | 0.002250 |
| 0.20 | 0.300 | -0.10 | 0.0100 | 0.10 | 0.001000 |
| 0.25 | 0.300 | -0.05 | 0.0025 | 0.15 | 0.000375 |
| 0.30 | 0.300 | 0.00 | 0.0000 | 0.20 | 0.000000 |
| 0.35 | 0.300 | 0.05 | 0.0025 | 0.15 | 0.000375 |
| 0.40 | 0.300 | 0.10 | 0.0100 | 0.10 | 0.001000 |
| 0.45 | 0.300 | 0.15 | 0.0225 | 0.10 | 0.002250 |

0.011250

If you want to remove the watermark, please register $\sigma_{\text {Project } 432}=\sqrt{0.011250}=0.106066$
(4) $C V=\frac{0.106066}{0.300}=0.3536$
b. Bar Charts

Project 257

Combined by PDF Cateinififle (Unregistered Version)
c. Summary statistics

If you want to remove the watermark,		please reg Project 257
Project 432		
Range	1.100	0.400
Expected return (\bar{r})	0.450	0.300
Standard deviation $\left(\sigma_{r}\right)$	0.165	0.106
Coefficient of variation $(C V)$	0.3675	0.3536

Since Projects 257 and 432 have differing expected values, the coefficient of variation should be the criterion by which the risk of the asset is judged. Since Project 432 has a smaller $C V$, it is the opportunity with lower risk.

P8-11. Integrative-expected return, standard deviation, and coefficient of variation

LG 2; Challenge

a. Expected return: $\bar{r}=\sum_{i=1}^{n} r_{i} \times P_{r i}$

Combined by PDF Combine (Unregistered Vensiplatyd Return				
Asset F	0.40	0.10	0.04	
	0.10	0.20	0.02	
	0.00	0.40	0.00	
	-0.05	0.20	-0.01	
	-0.10	0.10	-0.01	-
				$\underline{\underline{0.04}}$

Combined by PDF Combine (Unregistered Versiomprimed

Asset G	0.35	0.40	0.14

If you wantoto remove thesovatermark, pbease register

	-0.20	0.30	-0.06	$\overline{0^{2.11}}$
Asset H	0.40	0.10	0.04	
	0.20	0.20	0.04	
	0.10	0.40	0.04	
	0.00	0.20	0.00	$\underline{0.10}$
	-0.20	0.10	-0.02	$\underline{0.10}$

Asset G provides the largest expected return.
Combined by PDF Commine (Unregistered Version)
b. Standard deviation: $\sigma=\sqrt{\sum_{i}\left(r_{i}-\bar{r}\right)^{2} x P_{r i}}$

If you want to reinnove the watermark, please register

	$r_{i}-\bar{r}$	$\left(r_{i}-\bar{r}\right)^{2}$	$\boldsymbol{P}_{\text {ri }}$	σ^{2}	σ_{r}			
Asset F	$0.40-0.04=0.36$	0.1296	0.10	0.01296				
	$0.10-0.04=0.06$	0.0036	0.20	0.00072				
	$0.00-0.04=-0.04$	0.0016	0.40	0.00064				
	$-0.05-0.04=-0.09$	0.0081	0.20	0.00162				
	$-0.10-0.04=-0.14$	0.0196	0.10	$\underline{0.00196}$				
				0.01790	$\underline{0.1338}$			
Asset G	$0.35-0.11=0.24$	0.0576	0.40	0.02304				
	$0.10-0.11=-0.01$	0.0001	0.30	0.00003				
	$-0.20-0.11=-0.31$	0.0961	0.30	$\underline{0.02883}$				
				0.05190	$\underline{0.2278}$			
Asset HCombinefo.Comy								
If you	$\begin{aligned} & \text { want to i. } 10=0.00 \\ & 0.00-0.10=-0.10 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & \text { Watern } \\ & 0.0100 \end{aligned}$	$\begin{gathered} \mathrm{K}_{\mathrm{K}}^{0.40} \\ 0.20 \end{gathered}$	$\begin{aligned} & 0.000 \\ & \text { reqlste } \\ & 0.002 \end{aligned}$				
	$-0.20-0.10=-0.30$	0.0900	0.10	$\underline{0.009}$				
				0.022	$\underline{0.1483}$			

Based on standard deviation, Asset G appears to have the greatest risk, but it must be measured against its expected return with the statistical measure coefficient of variation, since the three assets have differing expected values. An incorrect conclusion about the risk of the assets could be drawn using only the standard deviation.

Asset G: $\quad C V=\frac{0.2278}{0.11}=2.071$
Asset H: $\quad C V=\frac{0.1483}{0.10}=1.483$
As measured by the coefficient of variation, Asset F has the largest relative risk.
P8-12. Normal probability distribution

LG 2; Challenge

a. Coefficient of variation: $C V=\sigma_{r} \div \bar{r}$

Solving for standard deviation: $0.75=\sigma_{r} \div 0.189$
Combined by PDF Combinine $\sigma_{r}=0.95 \times 0.189 \pm 9.14175$ Version)
b. (1) 68% of the outcomes will lie between ± 1 standard deviation from the expected value:

If you want to remove the watermark, please register
$+1 \sigma=0.189+0.14175=0.33075$
$-1 \sigma=0.189-0.14175=0.04725$
(2) 95% of the outcomes will lie between ± 2 standard deviations from the expected value:
$+2 \sigma=0.189+(2 \times 0.14175)=0.4725$
$-2 \sigma=0.189-(2 \times 0.14175)=-0.0945$
(3) 99% of the outcomes will lie between ± 3 standard deviations from the expected value:
$+3 \sigma=0.189+(3 \times 0.14175)=0.61425$
$-3 \sigma=0.189-(3 \times 0.14175)=-0.23625$
c.

Probability Distribution

P8-13. Personanfimancie ordfoliphyman standard deviatinnegistered Version)

LG 3; Challenge

	Asset L $\left(\boldsymbol{w}_{\boldsymbol{L}} \times \boldsymbol{r}_{\boldsymbol{L}}\right)$	+	Asset M $\left(\boldsymbol{w}_{\boldsymbol{M}} \times \boldsymbol{r}_{\boldsymbol{M}}\right)$	Expected Portfolio Return $\boldsymbol{r}_{\boldsymbol{p}}$	
Year	$(14 \% \times 0.40=5.6 \%)$	$+(20 \% \times 0.60=12.0 \%)$	$=$	17.6%	
2013	$(14 \% \times 0.40=5.6 \%)$	+	$(18 \% \times 0.60=10.8 \%)$	$=$	16.4%
2014	$(16 \% \times 0.40=6.4 \%)$	+	$(16 \% \times 0.60=9.6 \%)$	$=$	16.0%
2016	$(17 \% \times 0.40=6.8 \%)$	$+(14 \% \times 0.60=8.4 \%)$	$=$	15.2%	
2017	$(17 \% \times 0.40=6.8 \%)$	$+(12 \% \times 0.60=7.2 \%)$	$=$	14.0%	
2018	$(19 \% \times 0.40=7.6 \%)$	$+(10 \% \times 0.60=6.0 \%)$	$=$	13.6%	

Combined by PDF Combine (Unregistered Version)

$$
r_{p}=\frac{17.6+16.4+16.0+15.2+14.0+13.6}{6}=15.467=15.5 \%
$$

c. Standard deviation: $\sigma_{r p}=\sqrt{\sum_{i=1}^{n} \frac{\left(r_{i}-\bar{r}\right)^{2}}{(n-1)}}$

$$
\begin{aligned}
& \sigma_{r p}=\sqrt{\left[\begin{array}{l}
\left.\frac{(17.6 \%-15.5 \%)^{2}+(16.4 \%-15.5 \%)^{2}+(16.0 \%-15.5 \%)^{2}}{\left[(15.2 \%-15.5 \%)^{2}+(14.0 \%-15.5 \%)^{2}+(13.6 \%-15.5 \%)^{2}\right.}\right] \\
6-1
\end{array}\right.} \\
& \sigma_{r p}=\sqrt{\frac{\left[\begin{array}{l}
(2.1 \%)^{2}+(0.9 \%)^{2}+(0.5 \%)^{2} \\
\left.+(-0.3 \%)^{2}+(-1.5 \%)^{2}+(-1.9 \%)^{2}\right] \\
5
\end{array}\right.}{}} \\
& \sigma_{r p}=\sqrt{\frac{(.000441+0.000081+0.000025+0.000009+0.000225+0.000361)}{5}} \\
& \text { Combined.by PDF Combine (Unregistered Version) }
\end{aligned}
$$

$$
\sigma_{k p}=\sqrt{\frac{0.001142}{5^{5}}}=\sqrt{0.000228 \%}=0.0151=1.51 \%
$$

If you want to remove the watermark, please register
d. The assets are negatively correlated.
e. Combining these two negatively correlated assets reduces overall portfolio risk.

P8-14. Porfolinaparlysis by PDF Combine (Unregistered Version)

LG 3; Challenge

a. Elpected prxifalifotroturemove the watermark, please register Alternative 1: 100\% Asset F
$r_{p}=\frac{16 \%+17 \%+18 \%+19 \%}{4}=17.5 \%$
Alternative 2: 50\% Asset F + 50\% Asset G

Year	Asset F $\left(\boldsymbol{w}_{\boldsymbol{F}} \times \boldsymbol{r}_{\boldsymbol{F}}\right)$	+	Asset G $\left(\boldsymbol{w}_{\boldsymbol{G}} \times \boldsymbol{r}_{\boldsymbol{G}}\right)$	Portfolio Return $\boldsymbol{r}_{\boldsymbol{p}}$	
2013	$(16 \% \times 0.50=8.0 \%)$	+	$(17 \% \times 0.50=8.5 \%)$	$=$	16.5%
2014	$(17 \% \times 0.50=8.5 \%)$	+	$(16 \% \times 0.50=8.0 \%)$	$=$	16.5%
2015	$(18 \% \times 0.50=9.0 \%)$	+	$(15 \% \times 0.50=7.5 \%)$	$=$	16.5%

$r_{p}=\begin{aligned} & 16.5 \%+16.5 \%+16.5 \%+16.5 \% \\ & 4\end{aligned}$
Alternative 3: 50\% Asset F + 50\% Asset H

Year	Asset F $\left(\boldsymbol{w}_{\boldsymbol{F}} \times \boldsymbol{r}_{\boldsymbol{F}}\right)$	+	Asset H $\left(\boldsymbol{w}_{\boldsymbol{H}} \times \boldsymbol{r}_{\boldsymbol{H}}\right)$	Portfolio Return $\boldsymbol{r}_{\boldsymbol{p}}$
2013	$(16 \% \times 0.50=8.0 \%)$	+	$(14 \% \times 0.50=7.0 \%)$	15.0%
2014	$(17 \% \times 0.50=8.5 \%)$	+	$(15 \% \times 0.50=7.5 \%)$	16.0%
2015	$(18 \% \times 0.50=9.0 \%)$	+	$(16 \% \times 0.50=8.0 \%)$	17.0%
2016	$(19 \% \times 0.50=9.5 \%)$	+	$(17 \% \times 0.50=8.5 \%)$	18.0%

$r_{p}=\frac{15.0 \%+16.0 \%+17.0 \%+18.0 \%}{4}=16.5 \%$
b. Standard deviation: $\sigma_{r p}=\sqrt{\sum_{i=1}^{n} \frac{\left(r_{i}-\bar{r}\right)^{2}}{(n-1)}}$

COmbined by PDF Combine (Unregistered Version)

If yoú $\sigma^{\sigma_{6}} \sqrt{\left[(16.0 \%-17.5 \%)^{2}+(17.0 \%-17.5 \%)^{2}+(18.0 \%-17.5 \%)^{2}+(19.0 \%-17.5 \%)^{2}\right]}$

$$
\begin{aligned}
& \sigma_{F}=\sqrt{\frac{\left[(-1.5 \%)^{2}+(-0.5 \%)^{2}+(0.5 \%)^{2}+(1.5 \%)^{2}\right]}{3}} \\
& \sigma_{F}=\sqrt{\frac{(0.000225+0.000025+0.000025+0.000225)}{3}} \\
& \sigma_{F}=\sqrt{\frac{0.0005}{3}}=\sqrt{.000167}=0.01291=1.291 \%
\end{aligned}
$$

(CO) mbined by PDF Combine (Unregistered Version)

If you $\sigma_{56}=\sqrt{\frac{\left[(16.5 \%-16.5 \%)^{2}+(16.5 \%-16.5 \%)^{2}+(16.5 \%-16.5 \%)^{2}+(16.5 \%-16.5 \%)^{2}\right]}{a n t ~ t o ~ r e m o v e ~ t h e ~ w a t e r m h a r k, ~ p l e a s e ~ r e g i s t e r ~}}$
$\sigma_{F G}=\sqrt{\frac{\left[(0)^{2}+(0)^{2}+(0)^{2}+(0)^{2}\right]}{3}}$
$\sigma_{F G}=0$
(3)

$$
\begin{aligned}
& \sigma_{F H}=\sqrt{\frac{\left[(15.0 \%-16.5 \%)^{2}+(16.0 \%-16.5 \%)^{2}+(17.0 \%-16.5 \%)^{2}+(18.0 \%-16.5 \%)^{2}\right]}{4-1}} \\
& \sigma_{F H}=\sqrt{\frac{\left[(-1.5 \%)^{2}+(-0.5 \%)^{2}+(0.5 \%)^{2}+(1.5 \%)^{2}\right]}{3}} \\
& \sigma_{\text {FH }}=\sqrt{\frac{[(0.000225+0.000025+0.000025+0.000225)]}{\frac{n e d ~ b y ~ P D F ~ C o n i b i n e ~(U n r e g i s t e r e d ~}{n+5}}}
\end{aligned}
$$

c. Coefficient of variation: $C V=\sigma_{r} \div \bar{r}$
$C V_{F}=\frac{1.291 \%}{17.5 \%}=0.0738$
$C V_{F G}=\frac{0}{16.5 \%}=0$
$C V_{F H}=\frac{1.291 \%}{16.5 \%}=0.0782$
d. Summary:

	$\boldsymbol{r}_{\boldsymbol{p}}$:Expected Value of Portfolio $\boldsymbol{\sigma}_{\boldsymbol{r p}}$	$\boldsymbol{C V}_{\boldsymbol{p}}$	
Alternative $1(F)$	17.5%	1.291%	0.0738
Alternative $2(F G)$	16.5%	0	0.0
Alternative 3 $(F H)$	16.5%	1.291%	0.0782
Combined by PDF Combine (Unregistered Version)			

Since the assets have different expected returns, the coefficient of variation should be used to
 coefficient of variation and therefore is the riskiest. Alternative 2 is the best choice; it is perfectly negatively correlated and therefore has the lowest coefficient of variation.

P8-15. Correlatiprbrisk and retupD Combine (Unregistered Version)

LG 4; Intermediate

(2) Range of the risk: between 5% and 10%
b. (1) Range of expected return: between 8% and 13%
(2) Range of the risk: $0<$ risk $<10 \%$
c. (1) Range of expected return: between 8% and 13%
(2) Range of the risk: $0<$ risk $<10 \%$

P8-16. Personal finance: International investment returns

LG 1, 4; Intermediate

a. \quad Return $_{\text {pesos }}=\frac{24,750-20,500}{20,500}=\frac{4,250}{20,500}=0.20732=20.73 \%$

c. \quad Return $_{\text {pesos }}=\frac{2,512.69-2,225.84}{2,225.84}=\frac{286.85}{2,225.84}=0.12887=12.89 \%$
d. The two returns differ due to the change in the exchange rate between the peso and the dollar. The peso had depreciation (and thus the dollar appreciated) between the purchase date and the sale date, causing a decrease in total return. The answer in part c is the more important of the two returns for Joe. An investor in foreign securities will carry exchange-rate risk.

P8-17. Total, nondiversifiable, and diversifiable risk

LG 5; Intermediate

a. and b.

c. Only nondiversifiable risk is relevant because, as shown by the graph, diversifiable risk can be virtually eliminated through holding a portfolio of at least 20 securities that are not positively correlated. David Talbot's portfolio, assuming diversifiable risk could no longer be reduced by additions to the portfolio, has 6.47% relevant risk.

P8-18. Grechicidffiyifition ofyetpDF Combine (Unregistered Version)

 LG 5; Intermediatea. If you want to remove the watermark, please register Derivation of Beta

Taking the points shown on the graph:
Beta $\mathrm{A}=\frac{\Delta Y}{\Delta X}=\frac{12-9}{8-4}=\frac{3}{4}=0.75$
Beta $\mathrm{B}=\frac{\Delta Y}{\Delta X}=\frac{26-22}{13-10}=\frac{4}{3}=1.33$
A financial calculator with statistical functions can be used to perform linear regression analysis. The beta (slope) of line A is 0.79 ; of line $\mathrm{B}, 1.379$.
c. With a higher beta of 1.33 , Asset B is more risky. Its return will move 1.33 times for each one point the market moves. Asset A's return will move at a lower rate, as indicated by its beta coefficient of 0.75 .

P8-19. Graphical derivation and interpretation of beta

LG 5; Intermediate

a. With a return range from -60% to $+60 \%$, Biotech Cures, exhibited in Panel B, is the more risky stock. Returns are widely dispersed in this return range regardless of market conditions.
 about -40% to $+40 \%$. There is less dispersion of returris within this return range.
b. The returns on fycligalindustries Ingotenotaterstock are mqrealoselycerrelated with the market's performance. Hence, most of Cyclical Industries returns fit around the upward sloping least-squares regression line. By comparison, Biotech Cures has earned returns approaching 60% during a period when the overall market experienced a loss. Even if the market is up, Biotech Cures has lost almost half of its value in some years.
c. On a standalone basis, Biotech Cures Corporation is riskier. However, if an investor was seeking to diversify the risk of their current portfolio, the unique, nonsystematic performance of Biotech Cures Corporation makes it a good addition. Other considerations would be the mean return for both (here Cyclical Industries has a higher return when the overall market return is zero), expectations regarding the overall market performance, and level to which one can use historic returns to accurately forecast stock price behavior.

P8-20. Interpeting befled by PDF Combine (Unregistered Version)

LG 5; Basic

Effelfof changeinntatctretrrowestquevithbettepfinak, please register
a. $1.20 \times(15 \%)=18.0 \%$ increase
b. $1.20 \times(-8 \%)=9.6 \%$ decrease
c. $1.20 \times(0 \%)=$ no change
d. The asset is more risky than the market portfolio, which has a beta of 1 . The higher beta makes the return move more than the market.
P8-21. Betas
LG 5; Basic
a. and b.
$\left.\begin{array}{lccccc}\hline & & \begin{array}{c}\text { Increase in } \\ \text { Asset }\end{array} & \text { Beta } & \text { Expected Impact } & \begin{array}{c}\text { Decrease in } \\ \text { Market Return }\end{array}\end{array} \begin{array}{c}\text { Impact on } \\ \text { Asset Return }\end{array}\right]$
c. Asset B should be chosen because it will have the highest increase in return.
d. Asset C would be the appropriate choice because it is a defensive asset, moving in opposition to the market. In an economic downturn, Asset C's return is increasing.

P8-22. Personal finance: Betas and risk rankings
LG 5; Intermediate
a.

	Stock	Beta
Most risky	B	1.40
	A	0.80
Least risky	C	-0.30

b. and combined by PDF Combine (Unregistered Version)

A	0.80	0.12	0.096	-0.05	-0.04
B	1.40	0.12	0.168	-0.05	-0.07
C	-0.30	0.12	-0.036	-0.05	0.015

d. In a declining market, an investor would choose the defensive stock, Stock C. While the market declines, the return on C increases.
e. In a rising market, an investor would choose Stock B, the aggressive stock. As the market rises one point, Stock B rises 1.40 points.

LG Ff yytormediatet to remove the watermark, please register
a.

| | | Portfolio A | | | Portfolio B | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Asset | Beta | $\boldsymbol{w}_{\boldsymbol{A}}$ | $\boldsymbol{w}_{\boldsymbol{A}} \times \boldsymbol{b}_{\boldsymbol{A}}$ | | $\boldsymbol{w}_{\boldsymbol{B}}$ | $\boldsymbol{w}_{\boldsymbol{B}} \times \boldsymbol{b}_{\boldsymbol{B}}$ |
| 1 | 1.30 | 0.10 | 0.130 | | 0.30 | 0.39 |
| 2 | 0.70 | 0.30 | 0.210 | | 0.10 | 0.07 |
| 3 | 1.25 | 0.10 | 0.125 | | 0.20 | 0.25 |
| 4 | 1.10 | 0.10 | 0.110 | | 0.20 | 0.22 |
| 5 | 0.90 | 0.40 | $\underline{0.360}$ | | 0.20 | $\underline{0.18}$ |
| | | $b_{\boldsymbol{A}}=$ | 0.935 | | $b_{B}=$ | 1.11 |

 risky than the market. Portfolio B's return will move more than Portfolio A's for a given increase or decrease in market returnh Portfolio B is the more risky
P8-24. Capital asset pricing model (CAPM): $r_{j}=R_{F}+\left[b_{j} \times\left(r_{m}-R_{F}\right)\right]$
LG 6; Basic

Case	$\boldsymbol{r}_{\boldsymbol{j}}$	$=$	$\boldsymbol{R}_{\boldsymbol{F}}+\left[\boldsymbol{b}_{\boldsymbol{j}} \times\left(\boldsymbol{r}_{\boldsymbol{m}}-\boldsymbol{R}_{\boldsymbol{F}}\right)\right]$
A	8.9%	$=$	$5 \%+[1.30 \times(8 \%-5 \%)]$
B	12.5%	$=$	$8 \%+[0.90 \times(13 \%-8 \%)]$
C	8.4%	$=$	$9 \%+[-0.20 \times(12 \%-9 \%)]$
D	15.0%	$=$	$10 \%+[1.00 \times(15 \%-10 \%)]$
E	8.4%	$=$	$6 \%+[0.60 \times(10 \%-6 \%)]$

P8-25. Personal finance: Beta coefficients and the capital asset pricing model

LG 5, 6; Intermediate

To solve this problem you must take the CAPM and solve for beta. The resulting model is:
Beta $=\frac{r-R_{F}}{R}$

CombRned by PDF Combine (Unregistered Version)

b. \quad Beta $=\frac{15 \%-5 \%}{16 \%-5 \%}=\frac{10 \%}{11 \%}=0.9091$
c. \quad Beta $=\frac{18 \%-5 \%}{16 \%-5 \%}=\frac{13 \%}{11 \%}=1.1818$
d. \quad Beta $=\frac{20 \%-5 \%}{16 \%-5 \%}=\frac{15 \%}{11 \%}=1.3636$
e. If Katherine is willing to take a maximum of average risk then she will be able to have an expected return of only 16%. $(r=5 \%+1.0(16 \%-5 \%)=16 \%$.)

LG 6; Intermediate
a. If yeusanatato rema $r_{j}=11.6 \%$
b. $15 \%=R_{F}+\left[1.25 \times\left(14 \%-R_{F}\right)\right]$

$$
R_{F}=10 \%
$$

c. $16 \%=9 \%+\left[1.10 \times\left(r_{m}-9 \%\right)\right]$
$r_{m}=15.36 \%$
d. $15 \%=10 \%+\left[b_{j} \times(12.5 \%-10 \%)\right.$

$$
b_{j}=2
$$

P8-27. Personal finance: Portfolio return and beta

LG 1, 3, 5, 6: Challenge

a. $\quad b_{p}=(0.20)(0.80)+(0.35)(0.95)+(0.30)(1.50)+(0.15)(1.25)$

$r_{B}=\frac{(\$ 36,000-\$ 35,000)+\$ 1,400}{\$ 35,000}=\frac{\$ 2,400}{\$ 35,000}=6.86 \%$
$r_{C}=\frac{(\$ 34,500-\$ 30,000)+0}{\$ 30,000}=\frac{\$ 4,500}{\$ 30,000}=15 \%$
$r_{D}=\frac{(\$ 16,500-\$ 15,000)+\$ 375}{\$ 15,000}=\frac{\$ 1,875}{\$ 15,000}=12.5 \%$
c. $\quad r_{P}=\frac{(\$ 107,000-\$ 100,000)+\$ 3,375}{\$ 100,000}=\frac{\$ 10,375}{\$ 100,000}=10.375 \%$
d. $\quad r_{A}=4 \%+[0.80 \times(10 \%-4 \%)]=8.8 \%$
$r_{B}=4 \%+[0.95 \times(10 \%-4 \%)]=9.7 \%$
$r_{C}=4 \%+[1.50 \times(10 \%-4 \%)]=13.0 \%$
$r_{D}=4 \%+[1.25 \times(10 \%-4 \%)]=11.5 \%$
e. Qf the four inyestments only $\mathcal{A}(15 \%$ vs. 13%) and $D(12.5 \%$ vs. $11.5 \%)$ had actual returns
 due to any unsystematic factor that would have caused the firm not do as well as expected.
 the time of the purchase overstated the true value of beta that existed during that year. A third explanation is that beta, as a single measure, may not capture all of the systematic factors that cause the expected return. In other words, there is error in the beta estimate.

P8-28. SecaritymarketinebSMPDF Combine (Unregistered Version)
 \section*{LG 6; Intermediate}

a, b, landybu want to remove the watermark, please register
Security Market Line

c. $\left.\quad r_{j}=\operatorname{ld}_{F}+y b_{j} \times\left(r_{m}-R_{F}\right)\right]$ remove the watermark, please register

Asset A
$r_{j}=0.09+[0.80 \times(0.13-0.09)]$
$r_{j}=0.122$
Asset B
$r_{j}=0.09+[1.30 \times(0.13-0.09)]$
$r_{j}=0.142$
d. Asset A has a smaller required return than Asset B because it is less risky, based on the beta of 0.80 for Asset A versus 1.30 for Asset B. The market risk premium for Asset A is 3.2\% $(12.2 \%-9 \%)$, which is lower than Asset B's market risk premium ($14.2 \%-9 \%=5.2 \%$).

P8-29. Shifts in the security market line
LG 6; Challenge
a, b, c, d.
Security Market Lines

 $r_{A}=8 \%+[1.1 \times(12 \%-8 \%)]$
 $r_{A}=12.4 \%$
c. $r_{A}=6 \%+[1.1 \times(10 \%-6 \%)]$
$r_{A}=6 \%+4.4 \%$
$r_{A}=10.4 \%$
d. $\quad r_{A}=8 \%+[1.1 \times(13 \%-8 \%)]$
$r_{A}=8 \%+5.5 \%$
$r_{A}=13.5 \%$
e. (1) A decrease in inflationary expectations reduces the required return as shown in the parallel downward shift of the SML.
(2) Increased risk aversion results in a steeper slope, since a higher return would be required

P8-30. Integrative-risk, return, and CAPM
LG 6; ChaHenge want to remove the watermark, please register
a.

Project	$\boldsymbol{r}_{\boldsymbol{j}}$	$=\boldsymbol{R}_{\boldsymbol{F}}+\left[\boldsymbol{b}_{\boldsymbol{j}} \times\left(\boldsymbol{r}_{\boldsymbol{m}}-\boldsymbol{R}_{\boldsymbol{F}}\right)\right]$	
A	$r_{j}=9 \%+[1.5 \times(14 \%-9 \%)]$	$=16.5 \%$	
B	$r_{j}=9 \%+[0.75 \times(14 \%-9 \%)]$	$=12.75 \%$	
C	$r_{j}=9 \%+[2.0 \times(14 \%-9 \%)]$	$=19.0 \%$	
D	$r_{j}=9 \%+[0 \times(14 \%-9 \%)]$	$=9.0 \%$	
E	$r_{j}=9 \%+[(-0.5) \times(14 \%-9 \%)]$	$=6.5 \%$	

b. and d.

c. Project A is 150% as responsive as the market.

 Project C is twice as responsive as the market.

Project is unaffected by market mpementermark, please register
Project E is only half as responsive as the market, but moves in the opposite direction as the market.
d. See graph for new SML.

$$
\begin{array}{ll}
r_{A}=9 \%+[1.5 \times(12 \%-9 \%)] & =13.50 \% \\
r_{B}=9 \%+[0.75 \times(12 \%-9 \%)] & =11.25 \% \\
r_{C}=9 \%+[2.0 \times(12 \%-9 \%)] & =15.00 \% \\
r_{D}=9 \%+[0 \times(12 \%-9 \%)] & =9.00 \% \\
r_{E}=9 \%+[-0.5 \times(12 \%-9 \%)] & =7.50 \%
\end{array}
$$

e. The steeper slope of SML_{b} indicates a higher risk premium than SML_{d} for these market conditions. When investor risk aversion declines, investors require lower returns for any given risk level (beta).

P8-31. Ethics problembined by PDF Combine (Unregistered Version)

LG 1; Intermediate

 managers to make risky investments with other people's money. However, managers have a duty to communicate truthfully with investors about the risk that they are taking. Portfolio managers should not take risks that they do not expect to generate returns sufficient to compensate investors for the return variability.

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register
Chapter 11
The Cost of Capital

■ Solutions to Problems

P11-1. LG 1: Concept of Cost of Capital
Basic
 combined cost of capital. This decision-making method may lead to erroneous accept/reject decisions want to remove the watermark, please register
(b) $\mathrm{k}_{\mathrm{a}}=\mathrm{w}_{\mathrm{d}} \mathrm{k}_{\mathrm{d}}+\mathrm{w}_{\mathrm{e}} \mathrm{k}_{\mathrm{e}}$
$\mathrm{k}_{\mathrm{a}}=0.40(7 \%)+0.60(16 \%)$
$\mathrm{k}_{\mathrm{a}}=2.8 \%+9.6 \%$
$k_{\mathrm{a}}=12.4 \%$
(c) Reject project 263. Accept project 264.
(d) Opposite conclusions were drawn using the two decision criteria. The overall cost of capital as a criterion provides better decisions because it takes into consideration the long-run interrelationship of financing decisions.

P11-2. LG 2: Cost of Debt Using Both Methods
Intermediate
(a) Net Proceeds: $\mathrm{N}_{\mathrm{d}}=\$ 1,010-\$ 30$

$$
\mathrm{N}_{\mathrm{d}}=\$ 980
$$

(c) Cost to Maturity:

Combined by PDF Combine (Unregistered Version)

If you want ${ }^{2}+$ remole
$\$ 980=\left[\sum_{\mathrm{t}=1}^{15} \frac{-\$ 120}{(1+\mathrm{k})^{\mathrm{t}}}\right]+\left[\frac{-\$ 1,000}{(1+\mathrm{k})^{15}}\right]$
Step 1: Try 12%

$$
\begin{aligned}
& \mathrm{V}=120 \times(6.811)+1,000 \times(0.183) \\
& \mathrm{V}=817.32+183 \\
& \mathrm{~V}=\$ 1,000.32
\end{aligned}
$$

(Due to rounding of the PVIF, the value of the bond is 32 cents greater than expected. At the coupon rate, the value of a $\$ 1,000$ face value bond is $\$ 1,000$.)

Combinged by PDF Combine (Unregistered Version)
$\begin{aligned} & \mathrm{V}=120 \times(6.462)+1,000 \times(0.160) \\ & \text { If } \mathrm{XOL}=77 \mathrm{~S} .44 \mathrm{t}+160 \text { remove the watermark, please register }\end{aligned}$
$\mathrm{V}=\$ 935.44$

The cost to maturity is between 12% and 13%.
Step 2: $\$ 1,000.32-\$ 935.44=\$ 64.88$
Step 3: $\$ 1,000.32-\$ 980.00=\$ 20.32$
Step 4: $\$ 20.32 \div \$ 64.88=0.31$
Step 5: $12+0.31=12.31 \%=$ before-tax cost of debt $12.31(1-0.40)=7.39 \%=$ after-tax cost of debt
Calculator solution: 12.30\%
(d) Approximate before-tax cost of debt

$\mathrm{k}_{\mathrm{d}}=\frac{\$ 120+\frac{(\$ 1,000-\$ 980)}{15}}{\frac{(\$ 980+\$ 1,000)}{2}}$
$\mathrm{k}_{\mathrm{d}}=\$ 121.33 \div \$ 990.00$
$\mathrm{k}_{\mathrm{d}}=12.26 \%$
Approximate after-tax cost of debt $=12.26 \% \times(1-0.4)=7.36 \%$
(e) The interpolated cost of debt is closer to the actual cost (12.2983\%) than using the approximating equation. However, the short cut approximation is fairly accurate and expedient.

P11-3. LG 2: Cost of Debt-Using the Approximation Formula:
Basic

Bond A

Combined $\$ 90+\frac{\$ 1,002}{20}=\$ 92.25$
 2
$\mathrm{k}_{\mathrm{i}}=9.44 \% \times(1-0.40)=5.66 \%$

Bond B

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{d}}=\frac{\$ 100+\frac{\$ 1,000-\$ 970}{16}}{\frac{\$ 970+\$ 1,000}{2}}=\frac{\$ 101.88}{\$ 985}=10.34 \% \\
& \mathrm{k}_{\mathrm{i}}=10.34 \% \times(1-0.40)=6.20 \%
\end{aligned}
$$

Bond C

$$
\begin{aligned}
& \text { Combimedoy } \$ 120+1 \text { Combine (Unregistered Version) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{i}}=12.58 \% \times(1-0.40)=7.55 \%
\end{aligned}
$$

Bond D

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{d}}=\frac{\$ 90+\frac{\$ 1,000-\$ 985}{25}}{\frac{\$ 985+\$ 1,000}{2}}=\frac{\$ 90.60}{\$ 992.50}=9.13 \% \\
& \mathrm{k}_{\mathrm{i}}=9.13 \% \times(1-0.40)=5.48 \%
\end{aligned}
$$

Bond E

$$
\mathrm{k}_{\mathrm{d}}=\frac{\$ 110+\frac{\$ 1,000-\$ 920}{22}}{\frac{\$ 920+\$ 1,000}{2}}=\frac{\$ 113.64}{\$ 960}=11.84 \%
$$

If you want to remove the watermark, please register
 Intermediate

$$
\mathrm{k}_{\mathrm{d}}=\frac{\mathrm{I}+\frac{\$ 1,000-\mathrm{N}_{\mathrm{d}}}{\mathrm{n}}}{\frac{\mathrm{~N}_{\mathrm{d}}+\$ 1,000}{2}} \quad \mathrm{k}_{\mathrm{i}}=\mathrm{k}_{\mathrm{d}} \times(1-\mathrm{T})
$$

Alternative A

$\mathrm{k}_{\mathrm{d}}=\frac{\$ 90+\frac{\$ 1,000-\$ 1,220}{16}}{\frac{\$ 1,220+\$ 1,000}{2}}=\frac{\$ 76.25}{\$ 1,110}=6.87 \%$
$\mathrm{k}_{\mathrm{i}}=6.87 \% \times(1-0.40)=4.12 \%$

Alternative(Bombined by PDF Combine (Unregistered Version)

$\mathrm{k}_{\mathrm{d}}=\frac{\$ 70+\frac{\$ 1,000-\$ 1,020}{\text { If ygu want }}}{\frac{\$ 1,020+\$ 1,000}{2}}=\frac{(6 c c o m o v e ~ t h e ~ w a t e r m a r k, ~ p l e a s e ~ r e g i s t e r ~}{\$ 1,010}=6.54 \% \mathrm{~m}$
$\mathrm{k}_{\mathrm{i}}=6.54 \% \times(1-0.40)=3.92 \%$

Alternative C

$\mathrm{k}_{\mathrm{d}}=\frac{\$ 60+\frac{\$ 1,000-\$ 970}{7}}{\frac{\$ 970+\$ 1,000}{2}}=\frac{\$ 64.29}{\$ 985}=6.53 \%$
$\mathrm{k}_{\mathrm{i}}=6.53 \% \times(1-0.40)=3.92 \%$

Alternative D

$\mathrm{k}_{\mathrm{d}}=\frac{\$ 50+\frac{\$ 1,000-\$ 895}{10}}{\$ 895+\$ 1,000}=\frac{\$ 60.50}{\$ 947.50}=6.39 \%$
Combined by PDF Combine (Unregistered Version)
$\mathrm{k}_{\mathrm{i}}=6.39 \% \times(1-0.40)=3.83 \%$
P11-5. LG 2: Cost of Preterred Stock: $\mathrm{K}_{\mathrm{p}}=\mathrm{D}_{\mathrm{p}} \div \mathrm{N}_{\mathrm{p}}$. the watermark, please register Basic
(a) $\mathrm{k}_{\mathrm{p}}=\frac{\$ 12.00}{\$ 95.00}=12.63 \%$
(b) $\mathrm{k}_{\mathrm{p}}=\frac{\$ 10.00}{\$ 90.00}=11.11 \%$

Basic $\begin{aligned} & \text { lif you want to remove the watermark, please register }\end{aligned}$
Preferred Stock
Calculation
A $\quad \mathrm{k}_{\mathrm{p}}=\$ 11.00 \div \$ 92.00=11.96 \%$
B $\quad \mathrm{k}_{\mathrm{p}}=3.20 \div 34.50=9.28 \%$
C $\quad \mathrm{k}_{\mathrm{p}}=5.00 \div 33.00=15.15 \%$
D $\quad \mathrm{k}_{\mathrm{p}}=3.00 \div 24.50=12.24 \%$
E $\quad \mathrm{k}_{\mathrm{p}}=1.80 \div 17.50=10.29 \%$
P11-7. LG 3: Cost of Common Stock Equity-CAPM
Intermediate
$\mathrm{k}_{\mathrm{s}}=\mathrm{R}_{\mathrm{F}}+\left[\mathrm{b} \times\left(\mathrm{k}_{\mathrm{m}}-\mathrm{R}_{\mathrm{F}}\right)\right]$
$\mathrm{k}_{\mathrm{s}}=6 \%+1.2 \times(11 \%-6 \%)$
$\mathrm{k}_{\mathrm{s}}=$ Gopmbined by PDF Combine (Unregistered Version)
$k_{\mathrm{s}}=12 \%$
(a) Risk premium $=6 \%$
(b) Rate of return $=12 \%$
(c) After-tax cost of common equity using the CAPM $=12 \%$

P11-8. LG 3: Cost of Common Stock Equity: $\mathrm{k}_{\mathrm{n}}=\frac{\mathrm{D}_{1}+\mathrm{g}}{\mathrm{N}_{\mathrm{n}}}$ Intermediate
(a) $g=\frac{D_{2006}}{D_{2002}}=$ FVIFk $_{2 \%, 4}$
$\mathrm{g}=\frac{\$ 3.10}{\$ 2.12}=1.462$
From FVIF table, the factor closest to 1.462 occurs at 10% (i.e., 1.464 for 4 years). Calculator solution: 9.97\%
(b) $\mathrm{N}_{\mathrm{n}}=\$ 52$ (given in the problem)

If you $\frac{\$ 3.44}{\$ 57.50}$ t- moremanve the watermark, please register
(d) $\mathrm{k}_{\mathrm{r}}=\frac{\mathrm{D}_{2007}}{\mathrm{~N}_{\mathrm{n}}}+\mathrm{g}$

$$
\mathrm{k}_{\mathrm{r}}=\frac{\$ 3.40}{\$ 55.00}+0.10=16.54 \%
$$

 Intermediate you want to remove the watermark, please register $\mathrm{k}_{\mathrm{r}}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g} \quad \mathrm{k}_{\mathrm{n}}=\frac{\mathrm{D}_{1}}{\mathrm{~N}_{\mathrm{n}}}+\mathrm{g}$

Firm	Calculation
A	$\mathrm{k}_{\mathrm{r}}=(\$ 2.25 \div \$ 50.00)+8 \%=12.50 \%$
	$\mathrm{k}_{\mathrm{n}}=(\$ 2.25 \div \$ 47.00)+8 \%=12.79 \%$
B	$\mathrm{k}_{\mathrm{r}}=(\$ 1.00 \div \$ 20.00)+4 \%=9.00 \%$
	$\mathrm{k}_{\mathrm{n}}=(\$ 1.00 \div \$ 18.00)+4 \%=9.56 \%$
C	$\mathrm{k}_{\mathrm{r}}=(\$ 2.00 \div \$ 42.50)+6 \%=10.71 \%$
	$\mathrm{k}_{\mathrm{n}}=(\$ 2.00 \div \$ 39.50)+6 \%=11.06 \%$
D	$\mathrm{k}_{\mathrm{r}}=(\$ 2.10 \div \$ 19.00)+2 \%=13.05 \%$

P11-10.LG 2, 4: The Fffectof TaxtRateoreyticle the watermark, please register Intermediate
(a) $\mathrm{WACC}=(0.30)(11 \%)(1-0.40)+(0.10)(9 \%)+(0.60)(14 \%)$
$W A C C=1.98 \%+0.9 \%+8.4 \%$
$\mathrm{WACC}=11.28 \%$
(b) $\mathrm{WACC}=(0.30)(11 \%)(1-0.35)+(0.10)(9 \%)+(0.60)(14 \%)$

WACC $=2.15 \%+0.9 \%+8.4 \%$
$\mathrm{WACC}=11.45 \%$
(c) $\mathrm{WACC}=(0.30)(11 \%)(1-0.25)+(0.10)(9 \%)+(0.60)(14 \%)$
$W A C C=2.48 \%+0.9 \%+8.4 \%$
$\mathrm{WACC}=11.78 \%$
(d) As the tax rate decreases, the WACC increases due to the reduced tax shield from the taxdeductible interest on debt.

P11-11.LG 4: WACC-Book Weights
Basic Combined by PDF Combine (Unregistered Version)
(a)

Type of Capital	Book Value	eig	Cost	ed Cost
L-T Debt	\$700,000	0.500	5.3\%	2.650\%
Preferred stock	50,000	0.036	12.0\%	0.432\%
Common stock	650,000	0.464	16.0\%	7.424\%
	\$1,400,000	1.000		10.506\%

(b) The WACC is the rate of return that the firm must receive on long-term projects to maintain the value of the firm. The cost of capital can be compared to the return for a project to determine whether the project is acceptable.

Intermediate
(a) youk want ton remove the watermark, please register

Type of Capital	Book Value	Weight	Cost	Weighted Cost
L-T Debt	$\$ 4,000,000$	0.784	6.00%	4.704%
Preferred stock	40,000	0.008	13.00%	0.104%
Common stock	$1,060,000$	0.208	17.00%	3.536%
	$\$ 5,100,000$			8.344%

(b) Market value weights:

Type of Capital	Market Value	Weight	Cost	Weighted Cost
L-T Debt	\$3,840,000	0.557	6.00\%	3.342\%
				0.117\%
				7.395\%
If you	69909,00	mark,		10.854\%

(c) The difference lies in the two different value bases. The market value approach yields the better value since the costs of the components of the capital structure are calculated using the prevailing market prices. Since the common stock is selling at a higher value than its book value, the cost of capital is much higher when using the market value weights. Notice that the book value weights give the firm a much greater leverage position than when the market value weights are used.

P11-13. LG 4: WACC and Target Weights

Intermediate
(a) Historical market weights:

Type of Capital	Weight	Cost	Weighted Cost
L-T Debt	0.25	7.20%	1.80%
Preferred stock	0.10	13.50%	1.35%
Common stock	0.65	16.00%	$\underline{10.40 \%}$

Combined by PDF Combine (Unregistered ${ }^{1355 \%}$ ersion)

(b) Target market weights:

If you want to remove the watermark, please register

Type of Capital	Weight	Cost	Weighted Cost
L-T Debt	0.30	7.20%	2.160%
Preferred Stock	0.15	13.50%	2.025%
Common Stock	0.55	16.00%	$\underline{8.800 \%}$
			12.985%

(c) Using the historical weights the firm has a higher cost of capital due to the weighting of the more expensive common stock component (0.65) versus the target weight of (0.55). This over-weighting in common stock leads to a smaller proportion of financing coming from the significantly less expense L-T debt and the lower costing preferred stock.

Challenge fou want to remove the watermark, please register
(a) Cost of Retained Earnings
$\mathrm{k}_{\mathrm{r}}=\frac{\$ 1.26(1+0.06)}{\$ 40.00}+0.06=\frac{\$ 1.34}{\$ 40.00}=3.35 \%+6 \%=9.35 \%$
(b) Cost of New Common Stock
$k_{s}=\frac{\$ 1.26(1+0.06)}{\$ 40.00-\$ 7.00}+0.06=\frac{\$ 1.34}{\$ 33.00}=4.06 \%+6 \%=10.06 \%$
(c) Cost of Preferred Stock
$\mathrm{k}_{\mathrm{p}}=\frac{\$ 2.00}{\$ 25.00-\$ 3.00}=\frac{\$ 2.00}{\$ 22.00}=9.09 \%$

$\mathrm{k}_{\mathrm{i}}=5.98 \% \times(1-0.40)=3.59 \%$
(e) $\quad \mathrm{BP}_{\text {common equity }}=\frac{\$ 4,200,000-(\$ 1.26 \times 1,000,000)}{0.50}=\frac{\$ 2,940,000}{0.50}=\$ 5,880,000$
(f) $\quad \mathrm{WACC}=(0.40)(3.59 \%)+(0.10)(9.09 \%)+(0.50)(9.35 \%)$

WACC $=1.436+0.909+4.675$
WACC $=7.02 \%$
This WACC applies to projects with a cumulative cost between 0 and $\$ 5,880,000$.
(g) $\quad \mathrm{WACC}=(0.40)(3.59 \%)+(0.10)(9.09 \%)+(0.50)(9.44 \%)$
$W A C C=1.436+0.909+4.72$
WACC $=7.07 \%$
This WACC applies to projects with a cumulative cost over $\$ 5,880,000$.

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Challenge
If you want to remove the watermark, please register

$$
\mathrm{k}_{\mathrm{d}}=\frac{\mathrm{I}+\frac{\left(\$ 1,000-\mathrm{N}_{\mathrm{d}}\right)}{\mathrm{n}}}{\frac{\left(\mathrm{~N}_{\mathrm{d}}+\$ 1,000\right)}{2}}
$$

$\mathrm{k}_{\mathrm{d}}=\frac{\$ 100+\frac{(\$ 1,000-\$ 950)}{10}}{\frac{(\$ 950+\$ 1,000)}{2}}=\frac{\$ 100+\$ 5}{\$ 975}=10.77 \%$
$\mathrm{k}_{\mathrm{i}}=10.77 \times(\mathrm{l}-0.40)$

Cost of Preferred Stock: $k_{p}=\frac{D_{p}}{N_{p}}$
If you want to remove the watermark, please register

$$
\mathrm{k}_{\mathrm{p}}=\frac{\$ 8}{\$ 63}=12.70 \%
$$

Cost of Common Stock Equity: $\mathrm{k}_{\mathrm{s}}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g}$
$\mathrm{g}=\frac{\mathrm{D}_{2007}}{\mathrm{D}_{2002}}=\mathrm{FVIF}_{\mathrm{k}_{\%, 4}}$
$\mathrm{g}=\frac{\$ 4.00}{\$ 2.85}=1.403$
From FVIF table, the factor closest to 1.403 occurs at 7\% (i.e., 1.404 for 5 years). Calculator solution: 7.01\%
$\mathrm{k}_{\mathrm{r}}=\frac{\$ 4.00}{\$ 50.00}+0.07=15.00 \%$

If you $\frac{k_{0}}{} \frac{\$ 4.00}{\$ 4220 a t}+0.07$ to $=16.52 \%$ remove the watermark, please register
(b) Breaking point $=\frac{\mathrm{AF}_{\mathrm{j}}}{\mathrm{W}_{\mathrm{j}}}$
$\mathrm{BP}_{\text {common equity }}=\frac{\left[\$ 7,000,000 \times\left(1-0.6^{*}\right)\right]}{0.50}=\$ 5,600,000$
Between $\$ 0$ and $\$ 5,600,000$, the cost of common stock equity is 15% because all common stock equity comes from retained earnings. Above $\$ 5,600,000$, the cost of common stock equity is 16.52%. It is higher due to the flotation costs associated with a new issue of common stock.

* The firm expects to pay 60% of all earnings available to common shareholders as dividends.

$$
\begin{aligned}
& \text { If you want to removerre stock } 0.10 \times 12.10 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { WACC }=11.35 \%
\end{aligned}
$$

(d) WACC—above $\$ 5,600,000$:
L-T Debt $\quad 0.40 \times 6.46 \%=2.58 \%$

Preferred stock $0.10 \times 12.70 \%=1.27 \%$
Common stock $0.50 \times 16.52 \%=8.26 \%$
WACC $=12.11 \%$
P11-16.LG 2, 3, 4, 5: Calculation of Specific Costs, WACC, and WMCC
Challenge
(a) Debt: (approximate)

$\mathrm{k}_{\mathrm{d}}=\frac{\$ 80+\frac{(\$ 1,000-\$ 940)}{20}}{\frac{(\$ 940+\$ 1,000)}{2}}=\frac{\$ 80+\$ 3}{\$ 970}=8.56 \%$
$\mathrm{k}_{\mathrm{i}}=\mathrm{kd} \times(1-\mathrm{t})$
$\mathrm{k}_{\mathrm{i}}=8.56 \% \times(1-0.40)$
$\mathrm{k}_{\mathrm{i}}=5.1 \%$
Preferred Stock:
$\mathrm{k}_{\mathrm{p}}=\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{N}_{\mathrm{p}}}$
$\mathrm{k}_{\mathrm{p}}=\frac{\$ 7.60}{\$ 90}=8.44 \%$
Common Stock:
$\mathrm{k}_{\mathrm{n}}=\frac{\text { Commbined by PDF Combine (Unregistered Version) }}{\mathrm{N}_{\mathrm{n}}}+\mathrm{g}$ (Un
$\mathrm{k}_{\mathrm{p}}=\frac{\text { Isf.gwu want }}{\$ 78}=0.06=0.1497=14.99 \%$ reme the watermark, please register
Retained Earnings:

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{r}}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g} \\
& \mathrm{k}_{\mathrm{p}}=\frac{\$ 7.00}{\$ 90}=0.06=0.1378=13.78 \%
\end{aligned}
$$

Combined by PRFF Combine (Unregistered Version)
(b) Breaking point $=\frac{\mathrm{W}_{\mathrm{i}}}{\mathrm{W}_{\mathrm{i}}}$

If you want to remoo,dog the watermark, please register
(1) $\mathrm{BP}_{\text {common equity }}=\frac{[100,000]}{0.50}=\$ 200,000$

Type of Capital	Target Capital Structure \%	Cost of Capital Source	Weighted Cost
(2) WACC equal to or below \$200,000 BP:			
Long-term debt	0.30	5.1\%	1.53\%
Preferred stock	0.20	8.4\%	1.68\%
Common stock equity	0.50	13.8\%	6.90\%
		$W A C C=10.11 \%$	
(3) WACC above $\$ 200,000 \mathrm{BP}$: CombingelermydebtDF Combine (W.Bregistered! 1 \%ersion) ${ }_{1.53 \%}$			
$W A C C=10.71 \%$			

P11-17.LG 4, 5, 6: Integrative-WACC, WMCC, and IOS
Challenge
(a) Breaking Points and Ranges:

Source of Capital	Cost $\%$	Range of New Financing	Breaking Point	Range of Total New Financing
Long-term debt	6	$\$ 0-\$ 320,000$	$\$ 320,000 \div 0.40=\$ 800,000$	$\$ 0-\$ 800,000$
	8	$\$ 320,001$ and above	Greater than Preferred stock	17
$\$ 0$ and above		Greater than $\$ 0$		
Common stock	20	$\$ 0-\$ 200,000$	$\$ 200,000 \div 0.40=\$ 500,000$	$\$ 0-\$ 500,000$
equity	24	$\$ 200,001$		
and above		Greater than $\$ 500,000$		

If you want to remove the watermark, please register
(c) wAeembined by PDF Combine (Unregistered Version)

If you want Range of Total	$\begin{aligned} & \text { eripurce of chal } \\ & \text { Capital } \end{aligned}$	$100 \mathrm{ft}$		$\begin{aligned} & \text { qighted } \\ & (2) \times(3 \end{aligned}$
New Financing	(1)	(2)	(3)	(4)
\$0-\$500,000	Debt	0.40	6	2.40\%
	Preferred	0.20	17	3.40\%
	Common	0.40	20	8.00\%
				13.80\%
\$500,000-\$800,000	Debt	0.40	6\%	2.40\%
	Preferred	0.20	17\%	3.40\%
	Common	0.40	24\%	9.60\%
				$\underline{\underline{15.40 \%}}$
Greater than	Debt	0.40	8\%	3.20\%
\$800,000 ombined	PDPrefermon	(4.PAr	ed70	3.40\%
	Common	0.40	24	9.60\%
If you wa	remove th	term	ase r	$\underline{\underline{16.20 \%}}$

(d) IOS Data for Graph

Investment	IRR	Initial Investment	Cumulative Investment
E	23%	$\$ 200,000$	$\$ 200,000$
C	22	100,000	300,000
G	21	300,000	600,000
A	19	200,000	800,000
H	17	100,000	900,000
I	16	400,000	$1,300,000$
B	15	300,000	$1,600,000$
D	14	600,000	$2,200,000$
F	13	100,000	$2,300,000$

 rate of return (IRR) on the marginal investment exceeds the weighted marginal cost of capital
 weighted marginal cost of the available funds of 16.2%.

P11-18.LG 4, 5, 6: Integrative-WACC, WMCC, and IOC
Challenge
(a) WACC: 0 to $\$ 600,000 \quad=(0.5)(6.3 \%)+(0.1)(12.5 \%)+(0.4)(15.3 \%)$

$$
=3.15 \%+1.25 \%+6.12 \%
$$

= 10.52\%

WACC: $\$ 600,001-\$ 1,000,000=(0.5)(6.3 \%)+(0.1)(12.5 \%)+(0.4)(16.4 \%)$

$$
=3.15 \%+1.25 \%+6.56 \%
$$

$$
=10.96 \%
$$

If you want to remove the widitermark, please register See part (c) for the WMCC schedule.
(b) All four projects are recommended for acceptance since the IRR is greater than the WMCC across the full range of investment opportunities.
(c)

Total New Financing/Investment (\$000)
(d) In this problem, projects H, G, and K would be accepted since the IRR for these projects exceeds the WMCC. The remaining project, M, would be rejected because the WMCC is greater than the IRR.

Combined by PDF Combine (Unregistered Version)

 P11-19. Ethics Problem Intermedibfeyou want to remove the watermark, please registerAnalysts familiar with WorldCom complained that much of the $\$ 105$ billion of its assets consisted of intangibles and goodwill amassed in the process of nearly 70 acquisitions. As a result, precise valuation of its assets was almost impossible. Many feared that assets were equally inflated as WorldCom's income statements. Indeed, after declaring Chapter 11, the company wrote off $\$ 35$ billion in plant and equipment in addition to $\$ 45$ billion in goodwill wiping out any equity left from the books.

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Leverage and Capital Structure

- Solution to Problems

P12-1. LG 1: Breakeven Point-Algebraic
Basic
$\mathrm{Q}=\frac{\text { Conabined by PDF Combine (Unregistered Version) }}{(\mathrm{P}-\mathrm{VC})}$

P12-2. LG 1: Breakeven Comparisons-Algebraic
Basic
(a) $\mathrm{Q}=\frac{\mathrm{FC}}{(\mathrm{P}-\mathrm{VC})}$

Firm F: $\quad \mathrm{Q}=\frac{\$ 45,000}{(\$ 18.00-\$ 6.75)}=4,000$ units
Firm G: $\quad Q=\frac{\$ 30,000}{(\$ 21.00-\$ 13.50)}=4,000$ units
Firm H: $\quad \mathrm{Q}=\frac{\$ 90,000}{(\$ 30.00-\$ 12.00)}=5,000$ units
(b) From least risky to most risky: F and G are of equal risk, then H . It is important to recognize

If yotermediate ${ }^{\text {da }}$ to remove the watermark, please register
(a) $\mathrm{Q}=\mathrm{FC} \div(\mathrm{P}-\mathrm{VC})$
$\mathrm{Q}=\$ 473,000 \div(\$ 129-\$ 86)$
$\mathrm{Q}=11,000$ units
(b) Combined by PDF Combine (Unregistered Version)

P12-4. LG 1: Breakeven Analysis
Intermediate
(a) $\mathrm{Q}=\frac{\$ 73,500}{(\$ 13.98-\$ 10.48)}=21,000 \mathrm{CDs}$
(b) Total operating costs $=\mathrm{FC}+(\mathrm{Q} \times \mathrm{VC})$

Total operating costs $=\$ 73,500+(21,000 \times \$ 10.48)$
Total operating costs $=\$ 293,580$
(c) $2,000 \times 12=24,000$ CDs per year. 2,000 records per month exceeds the operating breakeven by 3,000 records per year. Barry should go into the CD business.

 EBIT $=\$ 10,500$

Intermediate you wh to remove the watermark, please register
(a) $\mathrm{Q}=\mathrm{F} \div(\mathrm{P}-\mathrm{VC}) \quad \mathrm{Q}=\$ 40,000 \div(\$ 10-\$ 8)=20,000 \mathrm{books}$
(b)
$\mathrm{Q}=\$ 44,000 \div \$ 2.00=22,000$ books
(c)
$\mathrm{Q}=\$ 40,000 \div \$ 2.50=16,000$ books
(d)
$\mathrm{Q}=\$ 40,000 \div \$ 1.50 \quad=26,667$ books
(e) The operating breakeven point is directly related to fixed and variable costs and inversely related to selling price. Increases in costs raise the operating breakeven point, while increases in price lower it.

P12-6. LG 1: Breakeven Analysis Challenge
(a) $\mathrm{Q}=\frac{\mathrm{FC}}{(\mathrm{P}-\mathrm{VC})}=\frac{\$ 4,000}{\$ 800}=2,000$ figurines Combined by $\$ 8 \mathrm{~PB} \$ 6.00 \mathrm{mbine}$ (Unregistered Version)
(b) Sales
\$10,000
Less:ou want to remove the watermark, please register
Fixed costs 4,000
Variable costs ($\$ 6 \times 1,500$)
9,000
EBIT
(c) Sales
$\xlongequal{-\$ 15,000}$
Less:
Fixed costs $\quad 4,000$
Variable costs $(\$ 6 \times 1,500) \quad \underline{9,000}$
EBIT

$$
\$ 2,000
$$

(d) $\mathrm{Q}=\frac{\mathrm{EBIT}+\mathrm{FC}}{\mathrm{P}-\mathrm{VC}}=\frac{\$ 4,000+\$ 4,000}{\$ 8-\$ 6}=\frac{\$ 8,000}{\$ 2}=4,000$ units
(e) One alternative is to price the units differently based on the variable cost of the unit. Those more costly to produce will have higher prices than the less expensive production models. If they wish to maintain the same price for all units they may have to reduce the selection from the 15 types currently available to a smaller number which includes only those that have variable costs of $\$ 6$ or less.
 Intermediate
(a) and (b)

	$\mathbf{8 , 0 0 0}$ units	$\mathbf{1 0 , 0 0 0}$ units	$\mathbf{1 2 , 0 0 0}$ units
Sales	$\$ 72,000$	$\$ 90,000$	$\$ 108,000$
Less: Variable costs	40,000	50,000	60,000
Less: Fixed costs	20,000	$\underline{20,000}$	$\underline{20,000}$
EBIT	$\$ 12,000$	$\$ 20,000$	$\$ 28,000$

(c) Combined by PDF Combine (Unregistered Version)

Unit Sales	8,000	,000	12,000
Percentage			
change in unit sales	$=-20 \%$	0	$=+20 \%$
Percentage	$(12,000-20,000) \div 20,000$		$(28,000-20,000) \div 20,000$
change in			
EBIT	$=-40 \%$	0	$=+40 \%$

(d) EBIT is more sensitive to changing sales levels; it increases/decreases twice as much as sales.

P12-8. LG 2: Degree of Operating Leverage
Intermediate

Sales	\$571,500	\$635,000	\$698,500
Less: Variable costs	144,000	160,000	176,000
Less: Fixed costs	380,000	380,000	380,000
EBIT	\$47,500	\$95,000	\$142,500
(c)			
Change in Unit Sales	-1,000	0	+1,000
\% Change in Sales	$-1,000 \div 10,000=-10 \%$	0	1,000 $\div 10,000=+10 \%$
Change in EBIT	-\$47,500	0	+\$47,500
\% Change in EBIT (d)	$-\$ 47,500 \div 95,000=-50 \%$	0	\$47,500 $\div 95,000=+50 \%$
$\frac{\text { \% Change in EBIT }}{\text { \% Change in Sales }}$	$-50 \div-10=5$		$50 \div 10=5$

(e) $\mathrm{DOL}=\frac{[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})]}{\mathrm{CQ*QPA} A \mathbb{C}) \mathrm{byFP}} \mathrm{DF}$ Combine (Unregistered Version) DOLff $\frac{[10,000 \times(\$ 63.50-\$ 16.00)]}{[10,006 \times(\$ 63.5 d 0 \$ 19.00)(\$ 380,690]}$ Natermark, please register $\mathrm{DOL}=\frac{\$ 475,000}{\$ 95,000}=5.00$

Intermediate
(a) $\mathrm{Q}=\frac{\mathrm{FC}}{(\mathrm{P}-\mathrm{VC})}=\frac{\$ 72,000}{\$ 9.75-\$ 6.75}=24,000$ units
(b) $\mathrm{DOL}=\frac{[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})]}{[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})]-\mathrm{FC}}$

$$
\begin{aligned}
& \mathrm{DOL}=\frac{[25,000 \times(\$ 9.75-\$ 6.75)]}{[25,000 \times(\$ 9.75-\$ 6.75)]-\$ 72,000}=25.0 \\
& \mathrm{DOL}=\frac{[30,000 \times(\$ 9.75-\$ 6.75)]}{[30,000 \times(\$ 9.75-\$ 6.75)]-\$ 72,000}=5.0 \\
& \mathrm{DOL}=\frac{[40,000 \times(\$ 9.75-\$ 6.75)]}{[40,000 \times(\$ 9.75-\$ 6.75)]-\$ 72,000}=2.5
\end{aligned}
$$

(c) Combined by PDF Combine (Unregistered Version) If you want to remove $\frac{\mid \text { DOL versus Unit Sales }}{\text { tic waterminak, piease }}$

Combined by PDF Combine (Fbithegistered Version)

If you want to remove the watermark, please register
(d) DOL $=\frac{[24,000 \times(\$ 9.75-\$ 6.75)]}{[24,000 \times(\$ 9.75-\$ 6.75)]-\$ 72,000}=\infty$

At the operating breakeven point, the DOL is infinite.
(e) DOL decreases as the firm expands beyond the operating breakeven point.

P12-10. LG 2: Esscandianen by PDF Combine (Unregistered Version) Intermediate

Intermediate you wan	$\mathrm{max}_{\text {(a) }}$	(b)	ere
EBIT	\$24,600	\$30,600	\$35,000
Less: Interest	9,600	9,600	9,600
Net profits before taxes	\$15,000	\$21,000	\$25,400
Less: Taxes	6,000	8,400	10,160
Net profit after taxes	\$9,000	\$12,600	\$15,240
Less: Preferred dividends	7,500	7,500	7,500
Earnings available to common shareholders	\$1,500	\$5,100	\$7,740
EPS (4,000 shares)	\$0.375	\$1.275	\$1.935

P12-11. LG 2: Degree of Financial Leverage
Intermediate Combined by PDF Combine (Unregistered Version)

(b) $\mathrm{DFL}=\frac{\text { EBIT }}{\left[\operatorname{EBIT}-\mathrm{I}-\left(\mathrm{PD} \times \frac{1}{(1-\mathrm{T})}\right)\right]}$

DFL $=\frac{\$ 80,000}{[\$ 80,000-\$ 40,000-0]}=2$
(c)
EBIT $\$ 80,000 \quad \$ 120,000$

Less: Interest
Net profits before taxes

	$\$ 38,400$	$\$ 62,400$
Net profit after taxes	$\$ 12.80$	$\$ 20.80$

$$
\mathrm{DFL}=\frac{\$ 80,000}{[\$ 80,000-\$ 16,000-0]}=1.25
$$

P12-12. Een,

fhallenge
(a) $\mathrm{DFL}=$

EBIT

$\left[\operatorname{EBIT}-\mathrm{I}-\left(\mathrm{PD} \times \frac{1}{(1-\mathrm{T})}\right)\right]$
$\mathrm{DFL}=\frac{\$ 67,500}{[\$ 67,500-\$ 22,500-0]}=1.5$
(b)

EBIT (\$000)
(c) $\mathrm{DFL}=\frac{\$ 67,500}{\text { Combine } \$ \beta 7690 \mathbf{P} \$ 3500000]}=1.93$
Conibine (Unregistered Version)
fip Sefpranh to remove the watermark, please register
(e) The lines representing the two financing plans are paraflel since the immber of shares of common stock outstanding is the same in each case. The financing plan, including the preferred stock, results in a higher financial breakeven point and a lower EPS at any EBIT level.

 Intermediate(a) Operating breakeven $=\frac{\$ 28,000}{\$ 0.16}=175,000$ units
(b) $\quad \mathrm{DOL}=\frac{[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})]}{[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})]-\mathrm{FC}}$

DOL $=\frac{[400,000 \times(\$ 1.00-\$ 0.84)]}{[400,000 \times(\$ 1.00-\$ 0.84)]-\$ 28,000}=\frac{\$ 64,000}{\$ 36,000}=1.78$
(c) $\mathrm{EBIT}=(\mathrm{P} \times \mathrm{Q})-\mathrm{FC}-(\mathrm{Q} \times \mathrm{VC})$

EBIT $=(\$ 1.00 \times 400,000)-\$ 28,000-(400,000 \times \$ 0.84)$
EBIT $=\$ 400,000-\$ 28,000-\$ 336,000$
EBIT $=\$ 36,000$

$\mathrm{DFL}=\frac{\$ 36,000}{\left[\$ 36,000-\$ 6,000-\left(\frac{\$ 2,000}{(1-0.4)}\right)\right]}=1.35$
(d) $\mathrm{DTL}=\frac{[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})]}{\left[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})-\mathrm{FC}-\mathrm{I}-\left(\frac{\mathrm{PD}}{(1-\mathrm{T})}\right)\right]}$

DTL $=\frac{[400,000 \times(\$ 1.00-\$ 0.84)]}{\left[400,000 \times(\$ 1.00-\$ 0.84)-\$ 28,000-\$ 6,000-\left(\frac{\$ 2,000}{(1-0.4)}\right)\right]}$
DTL $=\frac{\$ 64,000}{[\$ 64,000-\$ 28,000-\$ 9,333]}=\frac{\$ 64,000}{\$ 26,667}=2.40$
DTL $=$ DOL \times DFL
$\mathrm{DTL}=1.78 \times 1.35=2.40$
Thetwolfolmithes dive yhe blrrsub.mbine (Unregistered Version)
If you want to remove the watermark, please register

P12-14. Eennhinedveyperg afombleine (Unregistered Version)

Intermediate
If you want to remove the watermark, please
(a) $\operatorname{DOLR}^{2}=\frac{[100,000 \times(\$ 2.00-\$ 1.70)]}{[100,000 \times(\$ 2.00-\$ 1.70)]-\$ 6,000}=\frac{\$ 30,000}{\$ 24,000}=1.25$
DFLr $=\frac{\$ 24,000}{[\$ 24,000-\$ 10,000]}=1.71$
$\mathrm{DTL}_{\mathrm{R}}=1.25 \times 1.71=2.14$
(b) $\operatorname{DOLw}=\frac{[100,000 \times(\$ 2.50-\$ 1.00)]}{[100,000 \times(\$ 2.50-\$ 1.00)]-\$ 62,500}=\frac{\$ 150,000}{\$ 87,500}=1.71$

DFLw $=\frac{\$ 87,500}{[\$ 87,500-\$ 17,500]}=1.25$
$\mathrm{DTL}_{\mathrm{R}}=1.71 \times 1.25=2.14$

(d) Two firms with differing operating and financial structures may be equally leveraged. Since
 differently and still have the same amount of total risk.

P12-15. LG 1, 2: Integrative-Multiple Leverage Measures and Prediction Challenge
(a) $\mathrm{Q}=\mathrm{FC} \div(\mathrm{P}-\mathrm{VC}) \quad \mathrm{Q}=\$ 50,000 \div(\$ 6-\$ 3.50)=20,000$ latches
(b) Sales $(\$ 6 \times 30,000) \quad \$ 180,000$

Less:
Fixed costs
50,000
Variable costs ($\$ 3.50 \times 30,000$)
EBIT
$\frac{105,000}{25,000}$
Less interest expense
13,000
EBT
12,000
Less taxes (40\%)
4,800
Net profits
$\xlongequal{\$ 7,200}$
(c) $\mathrm{DOL}_{1}=\frac{[\mathrm{Q} \times(\mathrm{P}-\mathrm{VC})]}{(\mathrm{PD})}$

$[30,000 \times(\$ 6.00-\$ 3.50)]=\$ 75,000$

(d) $\mathrm{DFL}=\frac{\text { EBIT }}{\left[\mathrm{EBIT}-\mathrm{I}-\left(\mathrm{PD} \times \frac{1}{(1-\mathrm{T})}\right)\right]}$
$\mathrm{DFL}=\frac{\$ 25,000}{\$ 25,000-\$ 13,000-[\$ 7,000 \times(1 \div 0.6)]}=\frac{\$ 25,000}{\$ 333}=75.08$
(e) $\mathrm{DTL}=\mathrm{DOL} \times \mathrm{DFL}=3 \times 75.08=225.24$

Combine 45,806 PDF Combine (Unregistered Version)

(f) Change in sales $=\frac{15,800}{30,000}=50 \%$
 $\%$ Change in $\mathrm{EBIT}=\%$ change in sales $\times \mathrm{DOL}=50 \% \times 3=150 \%$
New EBIT $=\$ 25,000+(\$ 25,000 \times 150 \%)=\$ 62,500$
$\%$ Change in net profit $=\%$ change in sales \times DTL $=50 \% \times 225.24=11,262 \%$
New net profit $=\$ 7,200+(\$ 7,200 \times 11,262 \%)=\$ 7,200+\$ 810,864=\$ 818,064$
P12-16. LG 3: Various Capital Structures
Basic

Debt Ratio	Debt	Equity
10\%	\$100,000	\$900,000
20\%	\$200,000	\$800,000
30\%	\$300,000	\$700,000
40\%		
50\%	\$500,000	\$500,000
60\%	If you u\$a0t,00 remove the uswooronark, please register	
90\%	\$900,000	\$100,000

Theoretically, the debt ratio cannot exceed 100%. Practically, few creditors would extend loans to companies with exceedingly high debt ratios ($>70 \%$).

P12-17. LG 3: Debt and Financial Risk
Challenge
(a) EBIT Calculation

Probability	0.20	0.60	0.20
Sales	\$200,000	\$300,000	\$400,000
Less: Variable costs (70\%)	140,000	210,000	280,000
Less: Fixed costs	75,000	75,000	75,000
EBIT	\$(15,000)	\$15,000	\$45,000
Less Interest	12,000	12,000	12,000
Earnings before taxes	\$(27,000)	\$3,00	\$33,000
Combined by PDF Combine (Unregistered Version)			
Earnings after taxesnt to	\$(1919.200)	1,	\$198889

Ģ) magined by PDF Combine (Unregistered Version)

EPS	\$(1.62)	\$0.18	\$1.98
$\text { Expected EPS }=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{EPS}_{\mathrm{j}} \times \operatorname{Pr}_{\mathrm{j}}$			
Expected EPS $=(-\$ 1.62 \times 0.20)+(\$ 0.18 \times 0.60)+(\$ 1.98 \times 0.20)$			
Expected EPS $=-\$ 0.324+\$ 0.108+\$ 0.396$			
Expected EPS $=\$ 0.18$			
$\sigma_{\mathrm{EPS}}=\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{EPS}_{\mathrm{i}}-\mathrm{EPS}\right)^{2} \times \operatorname{Pr}_{\mathrm{i}}}$			
$\sigma_{\text {EPS }}=\sqrt{\left[(-\$ 1.62-\$ 0.18)^{2} \times 0.20\right]+\left[(\$ 0.18-\$ 0.18)^{2} \times 0.60\right]+\left[(\$ 1.98-\$ 0.18)^{2} \times 0.20\right]}$			
$\sigma_{\text {EPS }}=\sqrt{\$ 1.296}=\$ 1.138$			
$\mathrm{CV}_{\mathrm{EPS}}=\frac{\sigma_{\mathrm{EPS}}}{\text { Expected EPS }}=\frac{1.138}{0.18}=6.32$			
(c)			
EBIT ${ }^{*}$	\$(15,000)	\$15,000	\$45,000
Less: Interest	0	0	0
Net profit before taxes	\$(15,000)	\$15,000	\$45,000
Less: Taxes	$(6,000)$	6,000	18,000
Net profits after taxes	\$(9,000$)$	\$9,000	\$27,000
EPS (15,000 shares)	\$(0.60)	\$0.60	\$1.80

* From part (a)

Expected EPS $=(-\$ 0.60 \times 0.20)+(\$ 0.60 \times 0.60)+(\$ 1.80 \times 0.20)=\$ 0.60$
$\sigma_{\mathrm{EPs}}=\sqrt{\left[\left({ }_{G}-\$ 0.60-\$ 0.60\right)^{2} \times 0.20\right]+\left[(\$ 0.60-\$ 0.60)^{2} \times 0.60\right]+\left[(\$ 1.80-\$ 0.60)^{2} \times 0.20\right]}$

If yeorla $=\sqrt{80.676} \theta$ scensmove the watermark, please register
$\mathrm{CV}_{\text {EPS }}=\frac{\$ 0.759}{0.60}=1.265$
(d) Sumframbiatitics by PDF Combine (Unregistered Version)

$\sigma_{\text {EPS }}$	\$1.138	\$0.759
$\mathrm{CV}_{\text {EPS }}$	6.320	1.265

Including debt in Tower Interiors' capital structure results in a lower expected EPS, a higher standard deviation, and a much higher coefficient of variation than the all-equity structure. Eliminating debt from the firm's capital structure greatly reduces financial risk, which is measured by the coefficient of variation.

P12-18. LG 4: EPS and Optimal Debt Ratio
Intermediate
(a)

Combined by PDECGmbine_(Hinregistered Version)
Debt Ratio vs. EPS
If you want to remove the watermark, please register

Debt Ratio (\%)

Combined by PDF Combine (Unregistered Version)

Maximum EPS appears to be at 60% debt ratio, with $\$ 3.95$ per share earnings.
If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version) (b) $\mathrm{CV}_{\text {EPS }}=\frac{\sigma_{\mathrm{EPP}}}{\text { EPS }}$

If you want to remove the watermark, please register

Debt Ratio	CV
0%	0.5
20	0.6
40	0.8
60	1.0
80	1.4

Debt Ratio vs. Coefficient of Variation

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

 Intermediate(a) Using $\$ 50,000$ and $\$ 60,000$ EBIT:

	Structure A		Structure B	
EBIT	$\$ 50,000$	$\$ 60,000$	$\$ 50,000$	$\$ 60,000$
Less: Interest	16,000	$\underline{16,000}$	$\underline{34,000}$	$\frac{34,000}{\$ 34,000}$
Net profits before taxes	$\$ 34,000$	$\$ 4,000$	$\$ 16,000$	$\$ 26,000$
Less: Taxes	$\underline{13,600}$	$\underline{17,600}$	$\underline{6,400}$	$\underline{10,400}$
Net profit after taxes	$\$ 20,400$	$\$ 26,400$	$\$ 9,600$	$\$ 15,600$
EPS (4,000 shares)	$\$ 5.10$	$\$ 6.60$		
EPS (2,000 shares)			$\$ 4.80$	$\$ 7.80$

Financial breakeven points:

Structukeambined by PBrfutumabine (Unregistered Version)

\$16,000
 \$34,000

(b)

If you want to remove the watermark, please register
Comparison of Financial Structures

(c) If EBIT is expected to be below $\$ 52,000$, Structure A is preferred. If EBIT is expected to be above $\$ 52,000$, Structure B is preferred.
(d) Structure A has less risk and promises lower returns as EBIT increases. B is more risky since it has a higher financial breakeven point. The steeper slope of the line for Structure B also indicates greater financial leverage.
(e) If EBIT is greater than $\$ 75,000$, Structure B is recommended since changes in EPS are much greater for given values of EBIT.

(a) you want to remove the watermark, please register

	Structure A		Structure B	
EBIT	\$30,000	\$50,000	\$30,000	\$50,000
Less: Interest	12,000	12,000	7,500	7,500
Net profits before taxes	\$18,000	\$38,000	\$22,500	\$42,500
Less: Taxes	7,200	15,200	9,000	17,000
Net profit after taxes	\$10,800	\$22,800	\$13,500	\$25,500
Less: Preferred dividends	1,800	1,800	2,700	2,700
Earnings available for common shareholders	\$9,000	\$21,000	\$10,800	\$22,800
EPS (8,000 shares)	\$1.125	\$2.625		
Eestab,				\$2.28

(b) If you want to remg gister Comparison of Capital Structures

If you want to remove the watermark, please register
(c) Structure A has greater financial leverage, hence greater financial risk.
(d) If EBIT is expected to be below $\$ 27,000$, Structure B is preferred. If EBIT is expected to be above $\$ 27,000$, Structure A is preferred.
(e) If EBIT is expected to be $\$ 35,000$, Structure A is recommended since changes in EPS are much greater for given values of EBIT.

 Intermediate(a)

ebt Ratio	0\%	15\%	30\%	45\%	60\%
EBIT	\$2,000,000	\$2,000,000	\$2,000,000	\$2,000,000	\$2,000,000
Less interest	0	120,000	270,000	540,000	900,000
EBT	\$2,000,000	\$1,880,000	1,730,000	\$1,460,000	\$1,100,000
Taxes @ 40\%	800,000	752,000	692,000	584,000	440,000
Net profit	\$1,200,000	\$1,128,000	\$1,038,000	\$876,000	\$660,000
Less preferred dividends	200,000	200,000	200,000	200,000	200,000
Profits available to common stock	\$1,000,000	\$928,000	\$838,000	\$676,000	\$460,000

EPS If you want to remove the watermark, please register $\$$
(b) $\mathrm{P}_{0}=\frac{\mathrm{EPS}}{\mathrm{ks}_{\mathrm{s}}}$

Debt: 0\%
$\mathrm{P}_{0}=\frac{\$ 5.00}{0.12}=\$ 41.67$
Debt: 30\%
$\mathrm{P}_{0}=\frac{\$ 5.99}{0.14}=\$ 42.79$

Debt: 15\%
$\mathrm{P}_{0}=\frac{\$ 5.46}{0.13}=\$ 42.00$
Debt: 45\%
$\mathrm{P}_{0}=\frac{\$ 6.15}{0.16}=\$ 38.44$

Debt: 60\%

$$
\mathrm{P}_{0}=\frac{\$ 5.75}{0.20}=\$ 28.75
$$

(c) The optimal capital structure would be 30% debt and 70% equity because this is the debt/equity mix that maximizes the price of the common stock.

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Challenge
(a) you debt ratio to remove the watermark, please register

	Probability		
	0.20	0.60	0.20
Sales	\$200,000	\$300,000	\$400,000
Less: Variable costs (70\%)	80,000	120,000	160,000
Less: Fixed costs	100,000	100,000	100,000
EBIT	\$20,000	\$80,000	\$140,000
Less Interest	0	0	0
Earnings before taxes	\$20,000	\$80,000	\$140,000
Less: Taxes	8,000	32,000	56,000
Earnings after taxes	\$12,000	\$48,000	\$84,000
Epsnonsi,nomshayesf) DF Combine (\$U4Bregistered\$Vearsion)			\$3.36

$$
\begin{aligned}
& \text { 49\% debtratie:to remove the watermark, please register } \\
& \begin{array}{ll}
\text { Total capital }=\$ 250,000(100 \% \text { equity } & =25,000 \text { shares } \times \$ 10 \text { book value }) \\
\text { Amount of debt }=20 \% \times \$ 250,000 & =\$ 50,000 \\
\text { Amount of equity }=80 \% \times 250,000 & =\$ 200,000 \\
\text { Number of shares }=\$ 200,000 \div \$ 10 \text { book value } & =20,000 \text { shares }
\end{array}
\end{aligned}
$$

	Probability		
	$\mathbf{0 . 2 0}$		
$\mathbf{0 . 6 0}$	$\mathbf{0 . 2 0}$		
EBIT	$\$ 20,000$	$\$ 80,000$	$\$ 140,000$
Less: Interest	5,000	5,000	5,000
Earnings before taxes	$\$ 15,000$	$\$ 75,000$	$\$ 135,000$
Less: Taxes	6,000	30,000	54,000
Earnings after taxes	$\$ 9,000$	$\$ 45,000$	$\$ 81,000$
EPS (20,000 shares)	$\$ 0.45$	$\$ 2.25$	$\$ 4.05$

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

40\%debrained by PDF Combine (Unregistered Version)

Amount of debt $=40 \% \times \$ 250,000:=$ total debt capital $=\$ 100,000$
Number.-9 shtares

	Probability		
	$\mathbf{0 . 2 0}$	$\mathbf{0 . 6 0}$	$\mathbf{0 . 2 0}$
EBIT	$\$ 20,000$	$\$ 80,000$	$\$ 140,000$
Less Interest	12,000	12,000	12,000
Earnings before taxes	$\$ 8,000$	$\$ 68,000$	$\$ 128,000$
Less: Taxes	3,200	27,200	51,200
Earnings after taxes	$\$ 4,800$	$\$ 40,800$	$\$ 76,800$
EPS (15,000 shares)	$\$ 0.32$	$\$ 2.72$	$\$ 5.12$

60\% debt ratio:

Number of shares $=\$ 100,000$ equity $\div \$ 10$ book value $=10,000$ shares

	Probability		
	0.20	0.60	0.20
EBIT	\$20,000	\$80,000	\$140,000
Less: Interest	21,000	21,000	21,000
Earnings before taxes	\$(1,000)	\$59,000	\$119,000
Less: Taxes	(400)	23,600	47,600
Earnings after taxes	\$(600)	\$35,400	\$71,400
EPS (10,000 shares)	\$(0.06)	\$3.54	\$7.14

Debt Ratio	E(EPS)	σ (EPS)	$\begin{gathered} \text { CV } \\ \text { (EPS) } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Common } \\ & \text { Shares } \end{aligned}$	Dollar Amount of Debt	Share Price*
0\%	\$1.92	0.9107	0.4743	25,000	0	\$1.92/0.16 = \$12.00
20\%	\$2.25	1.1384	0.5060	20,000	\$50,000	\$2.25/0.17 = \$13.24

- If you want to remove the watermark, please register
* Share price: E(EPS) \div required return for CV for E(EPS), from table in problem.
(b) (1) Optimal capital structure to maximize EPS: 60\% debt 40\% equity
(2) Optimal capital structure to maximize share price: 40% debt

60\% equity

Gc)mbined by PDF Combine(Hnregistered Version) EPS vs. Share Price

 If you want to remove the watermark, please register
 Debt Ratio (\%)

P12-23. LG 3, 4, 5, 6: Integrative-Optimal Capital Structure Challenge
(a)

\% Debt	Total Assets	\$ Debt	\$ Equity	No. of Shares @ \$25
0	$\$ 40,000,000$	$\$ 0$	$\$ 40,000,000$	$1,600,000$
10	$40,000,000$	$4,000,000$	$36,000,000$	$1,440,000$
20	$40,000,000$	$8,000,000$	$32,000,000$	$1,280,000$
30	$40,000,000$	$12,000,000$	$28,000,000$	$1,120,000$
40	$40,000,000$	$16,000,000$	$24,000,000$	960,000
50	$40,000,000$	$20,000,000$	$20,000,000$	800,000
60	$40,000,000$	$24,000,000$	$16,000,000$	640,000

(bdy mbined by PDF Combine (Unregistered Version)			
If Pebt wa\$Tqtal Pehtove fifdebakermark, Expensee register			
0	\$0	0.0\%	\$0
10	4,000,000	7.5	300,000
20	8,000,000	8.0	640,000
30	12,000,000	9.0	1,080,000
40	16,000,000	11.0	1,760,000
50	20,000,000	12.5	2,500,000
60	24,000,000	15.5	3,720,000

(c) Combined by PDF Combine (Unregistered Version)

$\begin{gathered} \hline \% \\ \text { Debt } \end{gathered}$	\$ Interest yexpensea	$2 m$	taxes	patineon	$\begin{gathered} \text { \# of } \\ \text { Sceag } \end{gathered}$	EPS
0	\$0	\$8,000,000	\$3,200,000	\$4,800,000	1,600,000	\$3.00
10	300,000	7,700,000	3,080,000	4,620,000	1,440,000	3.21
20	640,000	7,360,000	2,944,000	4,416,000	1,280,000	3.45
30	1,080,000	6,920,000	2,768,000	4,152,000	1,120,000	3.71
40	1,760,000	6,240,000	2,496,000	3,744,000	960,000	3.90
50	2,500,000	5,500,000	2,200,000	3,300,000	800,000	4.13
60	3,720,000	4,280,000	1,712,000	2,568,000	640,000	4.01

(d)

\% Debt	EPS	$\mathbf{k}_{\mathbf{s}}$	$\mathbf{P}_{\mathbf{0}}$
0	$\$ 3.00$	10.0%	$\$ 30.00$

10 Combji.2ed by PLP ${ }_{3}$ Combing ${ }_{1}(H$ nregistered Version)
$20 \quad 3.45 \quad 10.9 \quad 31.65$

40	3.90	12.6	30.95
50	4.13	14.8	27.91
60	4.01	17.5	22.91

(e) The optimal proportion of debt would be 30% with equity being 70%. This mix will maximize the price per share of the firm's common stock and thus maximize shareholders' wealth. Beyond the 30% level, the cost of capital increases to the point that it offsets the gain from the lower-costing debt financing.

P12-24. LG 3, 4, 5, 6: Integrative-Optimal Capital Structure
Challenge
(a)

	Probability		
	0.30	0.40	0.30
Sales	\$600,000	\$900,000	\$1,200,000
Less: Fixed costs	300,000	300,000	300,000
EBIIIf you want to remo	V $\$ 60.1900$		e \$420,900r

Gopmbined by PDF Combine (Unregistered Version)

If bebt want toAfremeve the Ahaternmark, Number of			
Ratio	of Debt	of Equity	Common Stock ${ }^{*}$
0\%	\$0	\$1,000,000	40,000
15\%	150,000	850,000	34,000
30\%	300,000	700,000	28,000
45\%	450,000	550,000	22,000
60\%	600,000	400,000	16,000

* Dollar amount of equity $\div \$ 25$ per share $=$ Number of shares of common stock.
(c)

Debt	Amount	Before Tax	Annual
45\%	450,000	13.0	58,500
60\%	600,000	17.0	102,000

(d) EPS $=[($ EBIT - Interest $)(1-T)] \div$ Number of common shares outstanding.

Debt

Ratio	Calculation	EPS
0%	$(\$ 60,000-\$ 0) \times(0.6) \div 40,000$ shares	$=\$ 0.90$
	$(\$ 240,000-\$ 0) \times(0.6) \div 40,000$ shares	$=3.60$
	$(\$ 420,000-\$ 0) \times(0.6) \div 40,000$ shares	$=$
15%	$(\$ 60,000-\$ 12,000) \times(0.6) \div 34,000$ shares	$=\$ 0.85$
	$(\$ 240,000-\$ 12,000) \times(0.6) \div 34,000$ shares	$=4.02$
	$(\$ 420,000-\$ 12,000) \times(0.6) \div 34,000$ shares	$=$
30%	$(\$ 60,000-\$ 30,000) \times(0.6) \div 28,000$ shares	$=\$ 0.64$
	$(\$ 240,000-\$ 30,000) \times(0.6) \div 28,000$ shares	$=4.50$

Debt Ratibou want to removeathatibhatermark, please reqieter		
0\%	$0.30 \times(0.90)+0.40 \times(3.60)+0.30 \times(6.30)$	
	$0.27+1.44+1.89$	$=\$ 3.60$
15\%	$0.30 \times(0.85)+0.40 \times(4.02)+0.30 \times(7.20)$	
	$0.26+1.61+2.16$	$=\$ 4.03$
30\%	$0.30 \times(0.64)+0.40 \times(4.50)+0.30 \times(8.36)$	
	$0.19+1.80+2.51$	$=\$ 4.50$
45\%	$0.30 \times(0.04)+0.40 \times(4.95)+0.30 \times(9.86)$	
	$0.01+1.98+2.96$	$=\$ 4.95$

$60 \% \quad 0.30 \times(-1.58)+0.40 \times(5.18)+0.30 \times(11.93)$
Combined by PDF Combine (Unregistered Version) $\begin{gathered}=\$ 5.18 \\ \text { Con }\end{gathered}$
(2) $\sigma_{\text {EPS }}$

Debtlf you want to remove the watermark, please register Ratio

Calculation

$$
\begin{aligned}
& 0 \% \quad \sigma_{\text {EPS }}=\sqrt{\left[(0.90-3.60)^{2} \times 0.3\right]+\left[(3.60-3.60)^{2} \times 0.4\right]+\left[(6.30-3.60)^{2} \times 0.3\right]} \\
& \sigma_{\text {EPS }}=\sqrt{2.187+0+2.187} \\
& \sigma_{\text {EPS }}=\sqrt{4.374} \\
& \sigma_{\text {EPS }}=2.091 \\
& \text { 15\% } \\
& \sigma_{\text {EPS }}=\sqrt{\left[(0.85-4.03)^{2} \times 0.3\right]+\left[(4.03-4.03)^{2} \times 0.4\right]+\left[(7.20-4.03)^{2} \times 0.3\right]} \\
& \sigma_{\text {EPS }}=\sqrt{3.034+0+3.034} \\
& \sigma_{\text {EPS }}=\sqrt{6.068} \\
& \sigma_{\text {EPS }}=2.463 \\
& 30 \% \quad \sigma_{\text {EPS }}=\sqrt{\left[(0.64-4.50)^{2} \times 0.3\right]+\left[(4.50-4.50)^{2} \times 0.4\right]+\left[(8.36-4.50)^{2} \times 0.3\right]} \\
& \sigma_{\text {EPS }}=\sqrt{4.470+0+4.470} \\
& \sigma_{\text {EPS }}=\sqrt{8.94} \\
& \text { Combifice }=B^{99} \text { PDF Combine (Unregistered Version) } \\
& 45 \% \quad \sigma_{\text {EPS }}=\sqrt{\left[(0.04-4.95)^{2} \times 0.3\right]+\left[(4.95-4.95)^{2} \times 0.4\right]+\left[(9.86-4.95)^{2} \times 0.3\right]} \\
& \text { If you } \underset{\sigma \text { EPS }}{ }=\sqrt{7.232}+1 \\
& \sigma_{\text {EPS }}=\sqrt{14.464} \\
& \sigma_{\text {EPS }}=3.803 \\
& 60 \% \quad \sigma_{\text {EPS }}=\sqrt{\left[(-1.58-5.18)^{2} \times 0.3\right]+\left[(5.18-5.18)^{2} \times 0.4\right]+\left[(11.930-5.18)^{2} \times 0.3\right]} \\
& \sigma_{\text {EPS }}=\sqrt{13.669+0+13.669} \\
& \sigma_{\text {EPS }}=\sqrt{27.338} \\
& \sigma_{\text {EPS }}=5.299
\end{aligned}
$$

Combined by PDF Combine (Unregistered Version)

If you Webt Ratio		
15\%	$2.463 \div 4.03$	$=0.611$
30\%	$2.990 \div 4.50$	$=0.664$
45\%	$3.803 \div 4.95$	$=0.768$
60\%	$5.229 \div 5.18$	$=1.009$

(f) (1)

E(EPS) vs. Debt Ratio

(2)

Coefficient of Variation vs. Debt Ratio

Frferthine debt ratio increases, although at some point the rate of increase of the EPS begins to
 the debt ratio increases, but at a more rapid rate.
(g)

> Comparison of Capital Structures

The EBIT ranges over which each capital structure is preferred are as follows:

Debt Ratio	EBIT Range
0%	$\$ 0-\$ 100,000$
30%	$\$ 100,001-\$ 198,000$
60%	above $\$ 198,000$

To calculate the intersection points on the graphic representation of the EBIT-EPS approach to capital structure, the EBIT level which equates EPS for each capital structure must be fould, asinbiluequlata iPDdtheambine (Unregistered Version)

Set EPS 0\% = EPS 30\%
EPS 30\% = EPS 60\%

$$
\text { EPS }_{30 \%}=\frac{[(1-0.4)(E B I T-\$ 30,000)-0]}{28,000 \text { shares }}
$$

$$
16,800 \text { EBIT }=24,000 \text { EBIT }-720,000,000
$$

$$
\text { EBIT }=\frac{720,000,000}{7,200}=\$ 100,000
$$

The major problem with this approach is that is does not consider maximization of shareholder wealth (i.e., share price).
(h)

Debt Ratio	EPS $\div \mathbf{k}_{\text {s }}$	Share Price
60\%	\$5.18 $\div 0.200$	\$25.90

(i) To maximize EPS, the 60% debt structure is preferred.

To maximize share value, the 30% debt structure is preferred.
A capital structure with 30% debt is recommended because it maximizes share value and satisfies the goal of maximization of shareholder wealth.

P12-25. Ethics Problem
Intermediate
Information asymmetry applies to situations in which one party has more and better information than the other interested party(ies). This appears to be exactly the situation in which managers overleverage or lead a buyout of the company. Existing bondholders and possibly stockholders are harmed by the financial risk of overleveraging, and existing stockholders are harmed if they accept a buyout price less than that warranted by accurate and incomplete information.

The board of directors has a fiduciary duty toward stockholders, and hopefully bears an ethical concerb toward bondbotgers zerwell The board anand should. ins st that managgment divulge all information it possess on the future plans and risks the eompany faces (aithougn, caution to keep this out of the hands of competitors is warranted). The board should be cautious to select and
 will no doubt think of other creative mechanisms to deal with this situation.)

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register
Chapter 13
Dividend Policy

- Solutions to Problems

P13-1. LG 1: Dividend Payment Procedures

Basic
(a)

	Debit	Credit
Crataibém ealnings PID.F Co\$nibibae (Unregistered Version)		
Dividends payable (Cr.)		\$330,000

If you want to remove the watermark, please register
(b) Ex dividend date is Thursday, July 6.
(c) Cash $\$ 170,000 \quad$ Dividends payable $\$ 0$

Retained earnings \$2,170,000
(d) The dividend payment will result in a decrease in total assets equal to the amount of the payment.
(e) Notwithstanding general market fluctuations, the stock price would be expected to drop by the amount of the declared dividend on the ex dividend date.

P13-2. LG 1: Dividend Payment Intermediate
(a) Friday, May 7
(b) Monday, May 10
(c) The price of the stock should drop by the amount of the dividend ($\$ 0.80$).
(d) She would be better off buying the stock at $\$ 35$ and taking the dividend. Her $\$ 0.80$ dividend would be taxed as the maximum rate of 15 percent and her $\$ 4$ short-term capital gain would
 she bought the stock post dividend for $\$ 34.20$ she would pay her marginal ordinary tax rate If yonthatalh $\$ 4.86$ qfennoterntlapiadgetmrmark, please register

P13-3. LG 2: Residual Dividend Policy
Intermediate
(a) Residual dividend policy means that the firm will consider its investment opportunities first. If after meeting these requirements there are funds left, the firm will pay the residual out in the form of dividends. Thus, if the firm has excellent investment opportunities, the dividend will be smaller than if investment opportunities are limited.
(b) Proposed

Capital budget	$\$ 2,000,000$	$\$ 3,000,000$	$\$ 4,000,000$
Debt portion	800,000	$1,200,000$	$1,600,000$

(c) The amount of dividends paid is reduced as capital expenditures increase. Thus, if the firm chooses larger capital investments, dividend payment will be smaller or nonexistent.

P13-4. LG 3: Dividend Constraints Intermediate
(a) Maximum dividend: $\frac{\$ 1,900,000}{400,000}=\$ 4.75$ per share

(c) In (a), cash and retained earnings each decrease by $\$ 1,900,000$.

(d) Retained earnings (and hence stockholders' equity) decrease by $\$ 80,000$.

P13-5. LG 3: Dividend Payment Procedures
Intermediate
(a) Maximum dividend: $\frac{\$ 40,000}{25,000}=\$ 1.60$ per share
(b) A $\$ 20,000$ decrease in cash and retained earnings is the result of a $\$ 0.80$ per share dividend.
(c) Cash is the key constraint, because a firm cannot pay out more in dividends than it has in cash, unless it borrows.

P13-6. LG 4: Low-Regular-and-Extra Dividend Policy
Intermediate
(a)

Year	Payout \%	Year	Payout \%
2001	25.4	2004	22.9
${ }_{200}^{2002}$ ombine ${ }_{17.9}^{23.3}$.			

(b)

Year	25\% Payout	Actual Payout	\$ Diff.	Year	$\begin{gathered} 25 \% \\ \text { Payout } \end{gathered}$	Actual Payout	\$ Diff.
2001	\$0.49	0.50	0.01	2004	0.55	0.50	-0.05
2002	0.54	0.50	-0.04	2005	0.60	0.50	-0.10
2003	0.70	0.50	-0.20	2006	0.75	0.50	-0.25

(c) In this example the firm would not pay any extra dividend since the actual dividend did not fall below the 25% minimum by $\$ 1.00$ in any year. When the "extra" dividend is not paid due to the $\$ 1.00$ minimum, the extra cash can be used for additional investment by placing the funds in a short-term investment account.
 raised to $\$ 0.55$ per share. The 55 cents per share will retain the 25% target payout but allow
 by paying too high of a regular dividend.

P13-7. LG 4: Alternative Dividend Policies
Intermediate

Year	Dividend	Year	Dividend
(a)			
1997	\$0.10	2002	\$1.28
1998	0.00	2003	1.12
1999	0.72	2004	1.28
2000	0.48	2005	1.52

(d) With a constant-payout policy, if the firm's earnings drop or a loss occurs the dividends will be low or nonexistent. A regular dividend or a low-regular-and-extra dividend policy reduces owner uncertainty by paying relatively fixed and continuous dividends.

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

P13-8. LG 4: Afternativime videndsdiipes Combine (Unregistered Version)

(d)

1999	$\$ 0.50$	2003	$\$ 0.50$
2000	0.50	2004	0.62
2001	0.50	2005	0.88
2002	0.53	2006	0.78

(e) Part (a) uses a constant-payout-ratio dividend policy, which will yield low or no dividends if earnings decline or a loss occurs. Part (b) uses a regular dividend policy, which minimizes the owners' uncertainty of earnings. Part (c) uses a low-regular-and-extra dividend policy, giving investors a stable income which is necessary to build confidence in the firm. Part (d) still provides the stability of Plans (b) and (c) but allows for larger future dividend growth.

P13-9. LG 5: Stock Dividend-Firm
Intermediate

[^0] stockholders' equity accounts.
If you want to remove the watermark, please register
P13-10.LG 5: Cash versus Stock Dividend
Intermediate
(a)

	Cash Dividend			
	\$0.01	\$0.05	\$0.10	\$0.20
Preferred Stock	\$100,000	\$100,000	\$100,000	\$100,000
Common Stock (400,000 shares @\$1.00 par)	400,000	400,000	400,000	400,000
Paid-in Capital in Excess of Par	200,000	200,000	200,000	200,000
CreeraibeithedrituysPDF	Corbuld,jome	regibstceated	iongo,000	240,000
Stockholders' Equity	\$1,016,000	\$1,000,000	\$980,000	\$940,000

If you want to remove the watermark, please register
(b)

	Stock Dividend			
	$\mathbf{1 \%}$	$\mathbf{5 \%}$	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$
Preferred Stock	$\$ 100,000$	$\$ 100,000$	$\$ 100,000$	$\$ 100,000$
Common Stock (xxx,xxx shares				
@ $\$ 1.00$ par)	404,000	420,000	440,000	480,000
Paid-in Capital in Excess of Par	212,000	260,000	320,000	440,000
Retained Earnings Stockholders' Equity	$\$ 1,020,000$	$\underline{240,000}$	$\underline{160,000}$	$\frac{0}{0}$

(c) Stock dividends do not affect stockholders' equity; they only redistribute retained earnings into common stock and additional paid-in capital accounts. Cash dividends cause a decrease in retained earnings and, hence, in overall stockholders' equity.

P13-11. ©GFinfiffedigidencinfereombine (Unregistered Version) Intermediate

(a) Y $_{\text {EPS }}=\frac{\text { K } \$ 9000000}{40,000}=\$ 2.00$ reve the watermark, please register
(b) Percent ownership $=\frac{400}{40,000}=1.0 \%$
(c) Percent ownership after stock dividend: $440 \div 44,000=1 \%$; stock dividends maintain the same ownership percentage. They do not have a real value.
(d) Market price: $\$ 22 \div 1.10=\$ 20$ per share
(e) Her proportion of ownership in the firm will remain the same, and as long as the firm's earnings remain unchanged, so, too, will her total share of earnings.

Challenge
If you want to remove the watermark, please register
(a) $\mathrm{EPS}=\frac{\$ 120,000}{50,000}=\$ 2.40$ per share
(b) Percent ownership $=\frac{500}{50,000}=1.0 \%$

His proportionate ownership remains the same in each case
(c) Market price $=\frac{\$ 40}{1.05}=\$ 38.10$

Market price $=\frac{\$ 40}{1.10}=\$ 36.36$
The market price of the stock will drop to maintain the same proportion, since more shares are being used.
(d) $E P S=\frac{\$ 2.40}{1.05}=\$ 2.29$ per share Combine (Unregistered Version)

EPS $=\frac{\$ 2.40}{1.10}=\$ 2.18$ per share
(e) Value of holdings: \$20,000 under each plan.

As long as the firm's earnings remain unchanged, his total share of earnings will be the same.
(f) The investor should have no preference because the only value is of a psychological nature. After a stock split or dividend, however, the stock price tends to go up faster than before.

P13-13.LG 6: Stock Split-Firm
Intermediate
(a) $\mathrm{CS}=\$ 1,800,000$
(1,200,000 shares
@ $\$ 1.50$ par)
(b) $\mathrm{CS}=\$ 1,800,000$
(400,000 shares
@ $\$ 4.50$ par)
(c) $\mathrm{CS}=\$ 1,800,000$
(1,800,000 shares
@ $\$ 1.00$ par)
(d) $\mathrm{CS}=\$ 1,800,000$
(3,600,000 shares
@ $\$ 0.50$ par)
(e) $\mathrm{CS}=\$ 1,800,000$
(150,000 shares
@ $\$ 12.00$ par)

Challenge

 outstanding would increase to 150,000 . The common stock account would still be $\$ 300,000$ (150,000 shares at $\$ 2$ par).
(b) The stock price would decrease by one-third to $\$ 80$ per share.
(c) Before stock split: $\$ 100$ per share $(\$ 10,000,000 \div 100,000)$

After stock split: $\quad \$ 66.67$ per share $(\$ 10,000,000 \div 150,000)$

 entail a decrease in par value. There would be a transfer of $\$ 150,000$ into the common retained earnings account, which decreases to $\$ 4,000,000$.
(2) The stock price would change to approximately the same level.
(3) Before dividend: $\$ 100$ per share $(\$ 10,000,000 \div 100,000)$

After dividend: $\$ 26.67$ per share ($\$ 4,000,000 \div 150,000$)
(4) Stock splits cause an increase in the number of shares outstanding and a decrease in the par value of the stock with no alteration of the firm's equity structure. However, stock dividends cause an increase in the number of shares outstanding without any decrease in par value. Stock dividends cause a transfer of funds from the retained earnings account into the common stock account and paid-in capital in excess of par account.

P13-15.LG 5, 6: Stock Dividend Versus Stock Split-Firm
Challenge
 decrease in par value. There would be a transfer of $\$ 20,000$ into the common stock account
 retained earnings account. The per-share earnings would decrease since net income remains the same but the number of shares outstanding increases by 20,000 .

EPS stock dividend $=\frac{\$ 360,000}{120,000}=\$ 3.00$
(b) There would be a decrease in the par value of the stock from $\$ 1$ to $\$ 0.80$ per share. The shares outstanding would increase to 125,000 . The common stock account would still be $\$ 100,000$ (125,000 shares at $\$ 0.80$ par). The per-share earnings would decrease since net income remains the same but the number of shares outstanding increases by 25,000 .

EPS stock split $=\frac{\$ 360,000}{125,000}=\$ 2.88$
(c) The option in part (b) the stock split, will accomplish the goal of reducing the stock price while maintaining a stable level of retained earnings. A stock split does not cause any change in retained earnings but reduces the price of the shares in the same proportion as the split ratio.

 payments, whether cash or stock dividends. Stock splits do not have any impact on the firm's If ygetined eiffiiss remove the watermark, please registerP13-16. LG 6: Stock Repurchase
Intermediate
(a) Shares to be repurchased $=\frac{\$ 400,000}{\$ 21.00}=19,047$ shares
(b) EPS $=\frac{\$ 800,000}{(400,000-19,047)}=\frac{\$ 800,000}{380,953}=\$ 2.10$ per share

If 19,047 shares are repurchased, the number of common shares outstanding will decrease and earnings per share will increase.
(c) Market price: $\$ 2.10 \times 10=\$ 21.00$ per share

(e) The pre-repurchase market price is different from the post-repurchase market price by the
 fewer shares outstanding.
Cash dividends are taxable to the stockholder when they are distributed and are taxed at the 15 percent tax rate. If the firm repurchases stock, taxes on the increased value resulting from the purchase are also due at the time of the repurchase. The additional $\$ 1$ gain would be taxed at either the long-term capital gains rate of 15 percent, the same as the dividend, unless the stock was held for less than 1 year then the gain would be short-term and taxed at the higher marginal ordinary income rate. Which alternative is preferred by the shareholders would depend on the investors' holding period for the stock at the time the repurchase is made. Taxes would not have to be paid on the repurchase gains until the repurchase actually occurs.

P13-17.LG 6: Stock Repurchase
Challenge Combined by PDF Combine (Unregistered Version)
(a) Shares outstanding needed $=\frac{(\$ 1,200,000 \times 0.40)}{\text { remo }}=\frac{\$ 480,000}{2}=240,000$

If you want to remo \$2e00he water\$200k, please register
(b) $300,000-240,000=60,000$ shares to repurchase

P13-18. Ethics Problem
Intermediate
Cash and investments at Ford equals $\$ 32$ billion, and less the $\$ 4$ billion pension need, the net amount settles at $\$ 28$ billion. If we accept the guesstimate of a $\$ 5$ billion loss per year during a recession (auto manufacturers are cyclical stocks), Ford could survive $\$ 28 / \$ 5=5.6$ years of losses. This is more than a hypothetical question-Chrysler based its large cash and securities holdings on exactly this premise, arguing it could've avoided bankruptcy in the 1970s had it been more liquid.

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version) If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)
If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)
If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version) If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)
If you want to remove the watermark, please register

Combined by PDF Combine (Unregistered Version)
If you want to remove the watermark, please register

■ Solutions to Problems

P16-1. LG 2: Lease Cash Flows
Basic
Firhombined by PDF Combine (Unregistered Version)
After-tax Cash Outflow

	Year	asfepay (1)	axl Banef (2)	$[(1)-(2)]$ (3)
A	1-4	\$100,000	\$40,000	\$60,000
B	1-14	80,000	32,000	48,000
C	1-8	150,000	60,000	90,000
D	1-25	60,000	24,000	36,000
E	1-10	20,000	8,000	12,000

P16-2. LG 2: Loan Interest
Intermediate

Loan	Year	Interest Amount
A	1	$\$ 1,400$
	2	1,098
	3	767
	4	402

$3 \quad 117$

D

E

1	$\$ 6,860$
2	5,822
3	4,639
4	3,290
5	1,753
1	$\$ 4,240$
2	3,768
3	3,220

Combined ६y PDF Comberine (Unregistered Version)
 5 1,848
 If you wand to remove \ddagger 解e watermark, please register

P16-3. LG 2: Loan Payments and Interest
Intermediate
Payment $=\$ 117,000 \div 3.889=\$ 30,085$ (Calculator solution: $\$ 30,087.43$)

Year	Beginning Balance	Interest	Principal	
1	\$117,000	\$16,380	\$13,705	
2	103,295	14,461	15,624	
3	87,671	12,274	17,811	
4	69,860	9,780	20,305	
5	Co4m,bithed by PDE,9380mbine (13,14egistered Version)			
6	26,408	3,697	26,388	\$26,408

Note: Due to the PVIFA tables in the text presenting factors only to the third decimal place and the rounding of interest and principal payments to the second decimal place, the summed principal payments over the term of the loan will be slightly different from the loan amount. To compensate in problems involving amortization schedules, the adjustment has been made in the last principal payment. The actual amount is shown with the adjusted figure to its right.\P16-4. LG 2: Lease versus Purchase

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

Gamhinged by PDF Combine (Unregistered Version)

(a) Lease

If yous Want to remove the watermark, please register
After-tax cash outflow $=\$ 25,200 \times(1-0.40)=\$ 15,120 /$ year for 3years $+\$ 5,000$ purchase option in year 3 (total for year 3: \$20,120)

Purchase

Year	Loan Payment (1)	Maintenance (2)	Depreciation (3)	Interest at 14% (4)	Total Deductions $(2+3+4)$ (5)	Tax Shields $[(0.40) \times(5)]$ (6)	After-tax Cash Outflows $[(1+2)-(6)]$ (7)
1	\$25,844	\$1,800	\$19,800	\$8,400	\$30,000	\$12,000	\$15,644
2	25,844	1,800	27,000	5,958	34,758	13,903	13,741
3	25,844	1,800	9,000	3,174	13,974	5,590	22,054

(b) Combined by PDF Combine (Unregistered Version)

End If of Year	After-tax ashOutflo		$\text { of } \mathrm{O} \mu \mathrm{t}$	Calculator Solution
Lease				
1	\$15,120	0.926	\$14,001	
2	15,120	0.857	12,958	
3	20,120	0.794	15,975	
			\$42,934	\$42,934.87
Purch				
1	\$15,644	0.926	\$14,486	
2	13,741	0.857	11,776	
3	22,054	0.794	17,511	
			\$43,773	\$43,773.06

(c) Since the PV of leasing is less than the PV of purchasing the equipment, the firm should lease the equipment and save $\$ 962$ in present value terms.

Combined by PDF Combine (Unregistered Version)

If you want to remove the watermark, please register

P16-5. LG 2: Lease whtinferthase PDF Combine (Unregistered Version)

 Challenge(a) Lease you want to remove the watermark, please register After-tax cash outflows $=\$ 19,800 \times(1-0.40)=\$ 11,880 /$ year for 5 years plus $\$ 24,000$ purchase option in year 5 (total $\$ 35,880$).

Purchase

Year	Loan Payment (1)	Maintenance (2)	Depreciation (3)	Interest at 14% (4)	Total Deductions $(2+3+4)$ (5)	Tax Shields $[(0.40) \times(5)]$ (6)	After-tax Cash Outflows $[(1+2)-(6)]$ (7)
1	\$23,302	\$2,000	\$16,000	\$11,200	\$29,200	\$11,680	\$13,622
2	23,302	2,000	25,600	9,506	37,106	14,842	10,460
3	23,302	2,000	15,200	7,574	24,774	9,910	15,392
4	$\begin{aligned} & 23,3,2 \\ & \mathrm{C} 01 \mathrm{in} 1 \mathrm{n} \\ & 23,302 \end{aligned}$	$\begin{aligned} & 2,000 \\ & i, 0,00 \\ & 2,000 \end{aligned}$	9,600 Col 9,600	5,372	16, 972 isted 14,462	Versision $\begin{array}{r}6,789 \\ 5,785\end{array}$	18,513 19,517

(b)

If you want to remove the watermark, please register

$\begin{gathered} \text { End } \\ \text { of Year } \end{gathered}$	After-tax Cash Outflows	PVIF $_{9 \%, \text { n }}$	PV of Outflows	Calculator Solution
Lease				
1	\$11,880	0.917	\$10,894	
2	11,880	0.842	10,003	
3	11,880	0.772	9,171	
4	11,880	0.708	8,411	
5	35,880	0.650	23,322	
			\$61,801	\$61,807.41
Purchase				
1	\$13,622	0.917	\$12,491	
2	10,460	0.842	8,807	
3	15,392	0.772	11,883	
4	18,513	0.708	13,107	

(c) The of yogent vana of the casmoutlows the watermark withe purchasing plase so register purchase the machine. By doing so, it saves $\$ 2,827$ in present value terms.
P16-6. LG 2: Capitalized Lease Values
Intermediate

Lease	Table Values	Calculator Solution
A	$\$ 40,000 \times 6.814=\$ 272,560$	$\$ 272,547.67$
B	$120,000 \times 4.968=596,160$	$596,116.77$
C	$9,000 \times 6.467=58,203$	$58,206.78$
D	$16,000 \times 2.531=40,496$	$40,500.72$
E	$47,000 \times 7.963=374,261$	$374,276.42$

Basic
(a) you want to remove the watermark, please register
(b),000 $\div 20$ shares $=\$ 50$ per share
(b) $\$ 500 \div 25$ shares $=\$ 20$ per share
(c) $\$ 1,000 \div 50$ shares $=\$ 20$ per share

P16-8. LG 3: Conversion Ratio
Basic
(a) $\$ 1,000 \div \$ 43.75=22.86$ shares
(b) $\$ 1,000 \div \$ 25.00=40$ shares
(c) $\$ 600 \div \$ 30.00=20$ shares

P16-9. LG 3: Conversion (or Stock) Value
Basicombined by PDF Combine (Unregistered Version)
(a) Bond value $=25$ shares $\times \$ 50=\$ 1,250$

(c) Bond value $=100$ shares $\times \$ 10.50=\$ 1,050$

P16-10. LG 3: Conversion (or Stock) Value
Basic

Bond	Conversion Value
A	$25 \times \$ 42.25=\$ 1,056.25$
B	$16 \times \$ 50.00=\$ 800.00$
C	$20 \times \$ 44.00=\$ 880.00$
D	$5 \times \$ 19.50=\$ 97.50$

P16-11.LG 4: Straight Bond Values
Intermediate

Bond	Years	Payments	Factors	PV	Calculator Solution
14		800	0.141	112.80	
				$\overline{\$ 662.30}$	\$662.61
C	1-30	\$130	6.177	\$803.01	
	30	1,000	0.012	12.00	
D				$\xlongequal{\$ 815.01}$	\$814.68
	1-25	\$140	5.766	\$807.24	
	25	1,000	0.020	20.00	
				$\underline{\$ 827.24}$	\$827.01

 Challenge If you want to remove the watermark, please register
(a)

Years	Payments	Factor, 12\%	PV	Calculator Solution
$1-20$	$\$ 100$	7.469	$\$ 746.90$	
20	1,000	0.104	104.00	
			$\$ 850.90$	$\$ 850.61$

(b) Conversion value $=50$ shares \times market price
$50 \times \$ 15=\$ 750$
$50 \times \$ 20=1,000$
$50 \times \$ 23=1,150$
$50 \times \$ 30=1,500$
$50 \times \$ 4$ Cōı̂̉bsped by PDF Combine (Unregistered Version)
(c)
$\left.\begin{array}{cc}\hline \text { Share Price }\end{array} \begin{array}{c}\text { If wat to rempve the watermark, please register } \\ \text { Bond Value }\end{array}\right)$

As the share price increases the bond will start trading at a premium to the pure bond value due to the increased probability of a profitable conversion. At higher prices the bond will trade at its conversion value.
(d) The minimum bond value is $\$ 850.90$. The bond will not sell for less than the straight bond value, but could sell for more.

P16-13.LG 4: Determining Values-Convertible Bond
Challenge
(b) Straight Bond Value

(b) Conversion value
$\$ 9.00 \times 80=\$ 720$
$12.00 \times 80=960$
$13.00 \times 80=1,040$
$15.00 \times 80=1,200$
$20.00 \times 80=1,600$

fcombined by PDF Combine (Unregistered Version)

As the share price increases the bond will start trading at a premium to the pure bond value due to the increased probability of a profitable conversion. At higher prices the bond will trade at its conversion value.
(d)

Up to Point X, the Straight Bond Value is the minimum market value. For stock prices above

If you want to remove the watermark, please register

 Intermediate Implied price of all warrants = Price of bond with warrants - Straight bond value Price per warrant $=\frac{\text { Implied Price of all warrants }}{\text { Number of warrants }}$
Straight Bond Value:

Bond	Years	Payments	Factors	PV	Solution Calculator	
A	$\begin{gathered} 1-15 \\ 15 \end{gathered}$	\$120	$6.462(13 \%)$0.160	\$775.44		
		1,000		160.00		
				\$935.44	\$935.38	
B	1-10	\$95	5.650 (12\%)	\$536.75		
C	$\text { If }_{20} 8 \mathrm{u} \text { want }{ }_{500}^{\$ 50} \mathrm{rer}$			62.00		
			\$460.15	\$460.18		
D	$\begin{gathered} 1-20 \\ 20 \end{gathered}$	\$110		$\begin{array}{r} 7.469 \text { (12\%) } \\ 0.104 \end{array}$	\$821.59	
		1,000	104.00			
			\$925.59		\$925.31	

Price Per Warrant:

Bond	Price with Warrants	Straight Bond Value	$=$	Implied Price	\div	Number of Warrants	$=$	Price per Warrant
A	$\$ 1,000$	-	$\$ 935.44$	$=$	$\$ 64.56$	\div	10	$=$
B	1,100	-	858.75	$=$	241.25	\div	30	$=$
C	500	-	460.15	$=$	39.85	\div	5	$=$
D	1,000	-	925.59	$=$	74.41	\div	20	$=$

P16-15.LG 5: Evaluation of the Implied Price of an Attached Warrant
Challengeombined by PDF Combine (Unregistered Version)
(a) Straight Bond Value

If you want to remove the				
Years	watermark, Paments	plinalacoregister PVIF (13\%)	PV	Solution
$1-30$	$\$ 115$	7.496	$\$ 862.04$	
30	1,000	0.026	$\underline{26.00}$	
			$\underline{\underline{\$ 888.04}}$	$\$ 887.57$

(b) Implied price of all warrants $=$ (Price with warrants - Straight Bond Value)

Implied price of warrant $=\$ 1,000-\$ 888.04$
Implied price of warrant $=\$ 111.96$

Price per warrant $=\$ 111.96 \div 10$
If ypuce pant tar = $=\$ 11.96 \div$ the watermark, please register
(d) The implied price of $\$ 11.20$ is below the theoretical value of $\$ 12.50$, which makes the bond an attractive investment.

P16-16. LG 5: Warrant Values
Challenge
(a) TVW $=\left(\mathrm{P}_{0}-\mathrm{E}\right) \times \mathrm{N}$

TVW $=(\$ 42-\$ 50) \times 3=-\$ 24$
TVW $=(\$ 46-\$ 50) \times 3=-\$ 12$
TVW $=(\$ 48-\$ 50) \times 3=-\$ 6$
TVW $=(\$ 54-\$ 50) \times 3=\$ 12$

TVW $=(\$ 62-\$ 50) \times 3=\$ 36$
Iff
(b)

$$
\begin{array}{||l}
\hline \text { Common Stock Price versus Warrant Price }
\end{array}
$$

(c) It tends to support the graph since the market value of the warrant for the $\$ 50$ share price appears to fall on the market value function presented in the table and graphed in part (b). The table shows that $\$ 50$ is one-third of the way between the $\$ 48$ and the $\$ 54$ common stock value; adding one-third of the difference in warrant values corresponding to those stock values (i.e., $(\$ 18-\$ 9) \div 3$) to the $\$ 9$ warrant value would result in a $\$ 12$ expected warrant value for the $\$ 50$ common stock value.
(d) The warrant premium results from a combination of investor expectations and the ability of the investor to obtain much larger potential returns by trading in warrants rather than stock. The warrant premium is reflected in the graph by the area between the theoretical value and the market value of the warrant.
 due to the fact that as time diminishes, the possibilities for speculative gains likewise decline. If you want to remove the watermark, please register
P16-17.LG 5: Common Stock versus Warrant Investment
Challenge
(a) $\$ 8,000 \div \$ 50$ per share $=160$ shares
$\$ 8,000 \div \$ 20$ per warrant $=400$ warrants
(b) 160 shares $\times(\$ 60-\$ 50)=\$ 1,600$ profit
$\$ 1,600 \div \$ 8,000=20 \%$
(c) 400 shares $\times(\$ 45-\$ 20)=\$ 10,000$ profit
$\$ 10,000 \div \$ 8,000=125 \%$
(d) Ms. Michaels would have increased profitability due to the high leverage effect of the warrant, but the potential for gain is accompanied with a higher level of risk.

P16-18.LG 5: Common Stock versus Warrant Investment

Challenge Combined by PDF Combine (Unregistered Version)

(a) $\$ 6,300 \div \$ 30$ per share $=210$ shares purchased

(b) $\$ 6,300 \div \$ 7$ per warrant $=900$ warrants purchased

Profit on original investment $=[(\$ 4$ per share $\times 2)-\$ 7$ price of warrant $]=\$ 1$
$\$ 1$ gain $\times 900$ warrants $\quad=\$ 900$ profit $\quad \$ 1 \div \$ 7=14.29 \%$ total gain
(c) Stock (1) $\$ 6,300$ investment $-\$ 6,300$ proceeds from sale $=\$ 0$
(2) 210 shares $\times(\$ 28-\$ 30)=-\$ 420(-6.67 \%)$

Warrants (1) [(\$2 gain per share $\times 2$ shares) $-\$ 7$ price of warrant] $\times 900$ warrants $=-\$ 3 \times 900=-\$ 2,700=-42.85 \%$
(2) Since the warrant exercise price and the stock price are the same, there is no reason to exercise the warrant. The full investment in the warrant is lost:

$$
\$ 7 \times 900 \text { warrants }=\$ 6,300 \quad-\$ 7 \div \$ 7=-100 \%
$$

(d) Warrants increase the possibility for gain and loss. The leverage associated with warrants results in higher risk as well as higher expected returns.

P16-19.LG 6: Option Profits and Losses

Intermediatembined by PDF Combine (Unregistered Version)
 Option

 $\$ 500-\$ 200=\$ 300$

B 100 shares $\times \$ 3 /$ share $=\$ 300$
$\$ 300-\$ 350=-\$ 50$
The option would be exercised, as the loss is less than the cost of the option.
C 100 shares $\times \$ 10 /$ share $=\$ 1,000$
$\$ 1,000-\$ 500=\$ 500$
D -\$300; the option would not be exercised.
E $-\$ 450$; the option would not be exercised.

P16-20.E®bleaineptidny PDF Combine (Unregistered Version)

Intermediate
(a) You Want to remove the watermark, please register
$\$ 70 /$ share $-\$ 62 /$ share $=\$ 8 /$ share profit
$\$ 8 /$ share $\times 100$ shares $=\$ 800$
(b) Option transaction:

$$
\begin{aligned}
&(\$ 70 / \text { share } \times 100 \text { shares })=\$ 7,000 \\
&-(\$ 60 / \text { per share } \times 100 \text { shares })=-6,000 \\
&-\$ 600 \text { cost of option }=\frac{-600}{\text { profit }}= \\
& \hline 400
\end{aligned}
$$

(c) $\$ 600 \div 100$ shares $=\$ 6 /$ share

The stock price must rise to $\$ 66 /$ share to break even.
(d) If Carol actually purchases the stock, she will need to invest \$6,200 (\$62/share $\times 100$ shares)
 risks the purchase price of the option, $\$ 600$. If the price of the stock falls below $\$ 56 /$ share,
 $\$ 56) \times 100$ shares], would exceed the cost of the option). Due to less risk exposure with the option purchase, the profitability is correspondingly lower.

P16-21.LG 5: Put Option

Intermediate
(a) $(\$ 45-\$ 46) \times 100$ shares $=-\$ 100$

The option would not be exercised above the striking price; therefore, the loss would be the price of the option, $\$ 380$.

$$
\begin{aligned}
(\$ 45-\$ 44) \times 100 \text { shares } & =\$ 100 \\
\$ 100-\$ 380 & =-\$ 280
\end{aligned}
$$

The option would be exercised, as the amount of the loss is less than the option price.
$(\$ 45-\$ 40) \times 100$ shares $=\$ 500$
$\$ 500-\$ 380=\$ 120$
$(\$ 45-\$ 35) \times 100$ shares $=\$ 1,000$
$\$ 1,000-\$ 380=\$ 620$
Combined by PDF Combine (Uniregistered Version)
(ct If the price of the stock rises above the striking price, the risk is limited to the price of the put
P16-22. Ethics Problem
Challenge
When a company issues a stock and sells it at market price and keeps the proceeds then it increases the number of shares outstanding and dilution of earnings takes place. However, when the company issues stock to acquire assets, or pays a part of operating costs, these costs become expenses. Similarly, when the company issues stock in exchange for options to be exercised by employees below the market price, this is equivalent to issuing the stock at the market price and paying the difference to the employees in cash, which is clearly an expense.

SEKOLAH TINGGI ILMU EKONOMI Y.A.I

- Program Pascasarjana Magister Akuntansi (S-2)
- Program Studi Akuntansi (S-1) • ProgramStudi Manajemen (S-1)

JI. Salemba Raya No. 7-9A Jakarta Pusat, Telp. (021) 3149205, (021) 3914075
Homepage: http://www.yai.ac.id; Email: stie@yai.ac.id

Combined by PDF Combine (Unregistered Version)

No :164/K/STIE YAI/VIII/2020
 lf you want to remove the watermark, please register

Kepada Yth:
Ibu Ida Musdafia Ibrahim., SE.,MM
Dosen Sekolah Tinggi Ilmu Ekonomi Y.A.I
Di-
Tempat

Perihal : Ucapan Terima Kasih

Sekolah Tinggi Ilmu Ekonomi Y.A.I, menyampaikan penghargaan dan ucapan terima kasih kepada

Menurut data fang ada pada kami mata kulith Bapak/Ibu pada semester Genap 2019/2020yang Bapak/Ibu asth, sebagal betkut remove the watermark, please register

NO	MATA KULIAH	JUMLAH PERTEMUAN
1	Manajemen Keuangan II	13 Kali Pertemuan
2	Market Analysis and Portofolio Theory	13 Kali Pertemuan

Untuk mata kuliah yang sudah memenuhi persyaratan 14 kali tatap muka, kami harap Bapak/Ibu dapat mempertahankannya dan untuk mata kuliah yang jumlah tatap mukanya kurang dari yang ditentukan, kami sangat mengharapkan Bapak/Ibu dapat meningkatkan jumlah kehadirannya di semester yang akan datang guna meningkatkan kualitas belajar mengajar di Sekolah Tinggi Ilmu Ekonomi Y.A.I.

Atas perhatian dan kerjasamanya, kami sampaikan terima kasih.

Combined by PDF Combine (Unregistered Version).
If you want to remove the waternmark, please register

Ketua

Tembusan:

- Yth. Koord. LPT Y.A.I
- Arsip

[^0]: ${ }^{1} 10,500$ shares
 ${ }^{2} 11,000$ shares
 ${ }^{3} 12,000$ shares

